研究生: |
郭泓延 Hung-Yen, Kuo |
---|---|
論文名稱: |
多階式晶片型前濃縮裝置於揮發性有機氣體之研究 MEMS Fabricated VOC Multi-Stage μ-Preconcentrator |
指導教授: |
呂家榮
Lu, Chia-Jung |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 前濃縮 、多階式吸附劑 、破出體積 、動態吸附模擬 、前濃縮晶片 、多階式晶片型前濃縮裝置 |
英文關鍵詞: | preconcentration, Multi-stage adsorbents, breakthrough volume, Wheeler model, μ-preconcentrator, multi-stage μ-preconcentrator |
論文種類: | 學術論文 |
相關次數: | 點閱:190 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為開發多階式晶片型前濃縮裝置(Multi-Stage µ-Preconcentrator),其為微型氣相層析儀(µ-GC)之重要元件,利用吸附劑濃縮分析物後以加熱脫附的方式進樣使得儀器偵測極限降低,進而有助於偵測大氣環境中廣泛低濃度的揮發性有機氣體(VOCs)甚至半揮發性有機氣體(SVOCs),亦可應用於人體呼出的低濃度混合氣體進行非侵入式之分析方式。
本研究將Saran以及Cellulose藉由高溫燒結出自製之碳分子篩、非結晶碳膜結合市售吸附劑Tenax TA,利用製成整合填入自行設計之流道配合微機電製程開發以陽極接合封裝之多階式晶片型前濃縮裝置,並且利用蒸鍍法製作金屬加熱器。流道設計部份分別依照碳分子篩、非結晶碳膜以及Tenax TA之吸附能力排序吸附槽的順序,其比表面積分別為899 m2/g、308 m2/g以及35 m2/g,依照其吸附能力弱到強進行採樣順序,並以強至弱的吸附能力順序進行脫附,避免層析圖譜當中訊號峰的脫尾以及吸附劑的記憶效應。本研究自製燒結之碳分子篩對於高揮發性之小分子具有良好之吸附能力,並以乙醇(ethanol)作為指標氣體建立Wheeler model模擬計算其吸附容量以及動態吸附常數,估計其對於乙醇之吸附容量為0.482 mg/g。最後本研究利用多階式晶片型前濃縮裝置針對C2 ~ C14,沸點範圍由56℃ ~ 253.5℃,濃度皆為100 ppb的12種混合有機氣體進行採樣容量測試,此多階式晶片型前濃縮裝置能夠同時成功濃縮其中之乙醇0.8 L以及1.2 L以上的其餘廣泛有機氣體。
The object of this study is to design, fabricate and characterize a multi-stage μ-preconcentrator, which is an important component in micro-gas chromatograph. It uses adsorbents to concentrate volatile organic compounds before thermal desorption to improve the detection limit of instrument, therefore detecting the low concentration of VOCs even SVOCs in the atmosphere is more convenient. It also can help analyzing low concentration gas mixture in human breath in a non-invasive way.
In this study, we use high temperature to form carbon molecular sieve and carbon base adsorbent by saran and cellulose, which combine with a commercial adsorbent Tenax TA, and then inject into a pre-sealed, anodic bonded multi-stage μ-preconcentrator. During the sampling, carbon molecular sieve, carbon base adsorbent and Tenax TA are in series. The surface area of the adsorbents are 899 m2/g, 308 m2/g and 35 m2/g accordingly. It is arranged by strength of adsorption from strong to weak with sampling capacity, but gas flow is reversed during desorption. It can prevent signal tailing and memory effect in the preconcentrator. We applied Wheeler model to access the thermodynamic capacity of our carbon molecular sieve and found the value is 0.482 mg/g.
Finally, we use multi-stage μ-preconcentrator to concentrate 12 VOCs for capacity testing, the carbon numbers are from 2 to 14, boiling points are from 56℃ to 253.5℃, and all of the concentration are in 100 ppb. This multi-stage preconcentrator can concentrate ethanol up to 0.8 L, and concentrate others up to 1.2 L.
[1] C. J. Lu, E. T. Zellers, Anal. Chem., 2001, 73, 3449-3457.
[2] C. J. Lu, E. T. Zellers, Analyst, 2002, 127, 1061-1068.
[3] C. J. Lu, J. Whiting, R. D. Sacks, E. T. Zellers, Anal. Chem., 2003, 75, 1400-1409.
[4] 林彥宏, VOC前濃縮與預警系統之建構, 國立中央大學化學所, 2000.
[5] 林明傑, 近地表臭氧前驅物分析之前濃縮技術改良, 國立中央大學化學所, 2002.
[6] M. Martin, M. Crain, K. Walsh, E. Houser, J. Stepnowski, H. D. Wu, S. Ross, Sens. Actuators B, 2007, 126, 447-454.
[7] J. H. Correia, G. G. de, S. H. Kong, M. Bartek, R.F. Wolffenbuttel, Sens. Actuators A, 2000, 82, 191-197.
[8] G. E. Spangler, Field Anal. Chem. Technology, 2000, 4, 255-267.
[9] C. J. Lu, W. H. Steinecker, W. C. Tian, M. C. Oborny, J. M. Nichols, M. Agah, J. A. Potkay, H.K.L. Chan, J. Driscoll, R. D. Sacks, K. D. Wise, S. W. Pang, E. T. Zellers, Lab on a Chip, 2005, 5, 1123-1131.
[10] I. Voiculescu, M. Zaghloul, N. Narasimhan, Trends Anal. Chem., 2008, 27, 327-343.
[11] D. K. Wise, F. Dorman, R. Sacks, Anal. Chem., 2004, 76, 2629-2637.
[12] G. R. Lambertus, R. Sacks, Anal. Chem., 2005, 77, 2078–2084.
[13] J. M. Sanchez, R. D. Sacks, Anal. Chem., 2006, 78, 3046-3045.
[14] A. E. Herr, A. K. Singh, Anal. Chem., 2005, 77, 586–590.
[15] S. Song, A. K. Singh, T. J. Shepodd, B. J. Kirby, Anal. Chem., 2004, 76, 2367–2373.
[16] A. E. Herr, D. J. Throckmorton, A. A. Davenport , A. K. Singh, Anal. Chem., 2005, 77, 585–590.
[17] C. Pijolat, M. Camara, J.-P. Viricelle, Sens. Actuators B, 2007, 127, 179–185.
[18] W. C. Tian, S.W. Pang, C. J. Lu, E.T. Zellers, J. Microelectromech. Syst., 2003, 12, 264-272.
[19] W. C. Tian, H.K.L. Chan, S.W. Pang, C. J. LIP, E.T. Zellers,12th Int. Conf. Solid-State Sensors, Actuators and Microsystems, Transducers 03, Boston, MA, USA, 2003, 131–134.
[20] M. Y. Wang, W. R. Cheng, M. H. Liu, W. C. Tian, C. J. Lu, Talanta, 2012, 101, 307-313.
[21] D. Dollimore, Langmuir, 1987, 3, 708-713.
[22] H. C. Foley, Microporous Materials, 1995, 4, 407-433.
[23] C. R. Reid, I. P. O’koye, K. M. Thomas, Langmuir, 1998, 14, 2415-2425.
[24] F. Mason, R.J. Kottenstette, P.R. Lewis, E. Heller, R.P. Manginell, D.R. Adkins, G. Dulleck, D. Martinez, D. Sasaki, C. Mowry, C. Matzke and L. Anderson, Enschede, 2000, 229-232.
[25] B. Alfeeli, M. Agah, IEEE Sensors, 2010, 11, 2490-2493.
[26] B. Alfeeli and M. Agah, IEEE Sensors, 2009, 9, 1068-1075.
[27] T. Sukaew, H. Chang, G. Serrano, E. T. Zeller, Analyst, 2011, 136, 1664-1674.
[28] 王振興, 氣-固多層吸附理論與層析之研究, 國立台灣科技大學化學工程學系, 2000.
[29] 徐志明, 以三層模式模擬氧化鋁表面競爭吸附行為之研究, 國立雲林科技大學環境與衛生安全工程系, 2003.
[30] M. Inagaki, Pores in carbon materials-Importance of their control, 2009, 24, 193-232.
[31] 吳東明, 中孔徑矽分子篩與微孔徑碳分子篩使用於VOC線上濃縮之吸附性比較, 國立中央大學化學系, 2005.
[32] F. Brunner, G. Crescentini, L. Lattanzi, F. Mangani, J.Chormatography. 1990, 517, 123-129.
[33] W. Engewald, J. Porschmann, T. Welsh, Chromatographia. 1990, 30, 537-542.
[34] W. R. Betz, W.R. Supina, J. Chromatography.1989, 471, 105-112.
[35] N. V. Kovaleva, K.D. Scherbakova, J. Chromatography. 1990, 520, 55-68.
[36] M. T. Gilbert, J.H. Knox, B. Kaur, Chromatographia.1982, 16, 138-148.
[37] USEPA “Compendium Method TO-1: Method for the Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Tenax-TA Adsorption and Gas Chromatography/Mass Spectrometry (GC/MS)”
[38] B. Alfeeli, V. Jain, R. K. Johnson, F. L. Beyer, J. R. Heflin, M. Agah, Microchemical Journal, 2011, 98, 240-245.
[39] F. D. Shire, M. Jagtoyen, B. McEnaney, A. Sethuraman, J. M. Stencel, M. W. Thwaites, Abstracts of Papers of the American Chemical Socienty.1991, 202, 48.
[40] Patrick, J. W., Porosity in Carbons, 1st ed., Edward Arnold, 1995.
[41] Ertl, G., H. Knözinger, J. Weitkamp, VCH D-69451 Weinheim, 1997, 3, 1508.
[42] 黃富昌, 土壤結構及化性對有機污染物吸/脫附特性之研究, 國立中央大學環境工程研究所, 2004.
[43] 陳瑋如, 碳分子篩薄膜應用於微機電-有機氣體濃縮晶片之研製, 國立臺灣師範大學化學系, 2012.
[44] Arnell, J. C., H. L. McDermott, Butterworths, London, 1957, 2, 113.
[45] 王振興, 氣-固多層吸附理論與層析之研究, 國立台灣科技大學化學工程學系, 2000.
[46] 王明怡, 晶片型前濃縮裝置於有機揮發性氣體之研究, 國立臺灣師範大學化學系, 2010.
[47] 劉丙寅, 游家瑋, 蔡宏營, 葉性銓, 丁嘉仁, 異質晶圓接合機制探討及發展現況, 微奈米機械與系統技術專輯, 2005, 269, 5-20.
[48] 陳俊菁, 應用紅外線攝溫影像術檢測磁磚黏貼完整性, 朝陽科技大學, 2004.
[49] A. Wheeler, A.J. J . Robell, Catalysis, 1969, 13, 299-305.
[50] L.A. Jonas, T. Hall, P. Breysse, M. Corn, Environmental Sciences, 1988 , 49, 461-465.