研究生: |
陳柏村 |
---|---|
論文名稱: |
導電高分子與氮化鎵奈米線應用於光伏效應之研究 |
指導教授: | 陳家俊 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 氮化鎵 、太陽能電池 、奈米線 |
論文種類: | 學術論文 |
相關次數: | 點閱:283 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們企圖使用奈米管、奈米線或是奈米柱和共軛高分子混摻用來製作有機/無機混摻太陽能電池藉以提高電子在材料上的遷移率及電荷收集效率。我們將Thermal-CVD成長的氮化鎵奈米線和具規則性的聚3-己烷噻吩(P3HT)混摻置成薄膜,從拉曼光譜中我們看見氮化鎵奈米線和聚3-己烷噻吩 (P3HT) 在表面上可能有作用而使得聚3-己烷噻吩(P3HT)的特徵峰值及強度改變,另外在室溫的光激螢光光譜中可以看峰值紅移,可能是因為氮化鎵奈米線表面的孤對電子推擠聚3-己烷噻吩(P3HT)上的π電子及硫上的孤對電子造成聚3-己烷噻吩(P3HT)的排列較鬆散所致。我們設計氮化鎵奈米線混摻聚3-己烷噻吩(P3HT)的有機/無機太陽能電池其元件表現會受到濃度、膜厚及退火等影響,目前效率大約0.015%、開路電壓約為950mV、短路電流約為0.05 mA/cm2。
The nanorods, nanowire, nanotube and nanotips are mixed with the conjugated polymer to fabricate the organic-inorganic polymer solar cell in order to improve the carrier mobility and collection efficiency. The n-type GaN nanowires grown by thermal-CVD enveloped by a thin layer of the regioregular poly(3-hexylthiophene) (rrP3HT). Raman studies several the characteristics of GaN nanowires and rrP3HT with surface interaction. The room temperature PL spectrum displays redshift caused by that GaN nanowires make stacking loose of rrP3HT. The GaN nanowires/rrP3HT hybrid solar cell was fabricated with the efficiency around 0.015%, Voc ~950 mV and Jsc ~0.05 mA/cm2. The device performance is affected by the GaN nanowires’ concentration, active layer thickness and annealing process.
參考文獻
1 D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25,676 (1954).
2 J. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZsubstrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res.Appl. 7, 471 (1999).
3 R. McConnell, S. Kurtz, M. Symko-Davies, “Concentrator Photovoltaic Technologies”, Refocus. July/August (2005).
4 C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett. 48, 183(1986)
5 B. O’Regan, M. A. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353, 737 (1991)
6 G. Li, V. Shrotriya, J. Huang, Y. Yao, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Mater. 4, 864, (2005)
7 K. M. Coakley,Wudl and M. D. McGehee,“Conjugated polymer photovoltaiccells," Chem. Mater. 16, 4533 (2004)
8 W. U. Huynh, X. G. Peng, A. P. Alivisatos, “CdSe Nanocrystal Rods Poly(3-hexylthiophene) Composite Photovoltaic Devices”, Adv. Mater. 1999,11, 11, 923 (1999)
9 W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, “Hybrid Nanorod-Polymer SolarCells”, Science 295, 2425 (2002)
10 C. Goh, S. R. Scully,M.D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells” J. Appl. Phys. 101, 114503 (2007)
11 C. W. Chen, W. F. Su “Improved performance of polymer/TiO2 nanorod bulk heterojunctionphotovoltaic devices by interface modification “ Appl Phy Lett 92, 053312 (2008)
12 S. M. Sze, “Physics of Semiconductor Devices”, 2nd Edition
13 S. R. Forrest MRS Bull. 2005, 30(Jan), 28
14 J. Chem. Soc., Chem.Commun., 578, 1977
15 G. Grosso, R.Farchioni, Organic electronic materials:conjugatedpolymers and low molecular weight organic solidsSpringer,2001
16 T. Yamamoto, K. Sanechika, and A. Yamam m. Sci. Polym. Lett.Ed., 18 (1980)
17 J. W. P. Lin, L. P. Dudek, and J. Polym. Sci. Polym. Chem. Ed., 18
18 K. Y. Jen, R. Oboodi, R. L. Elsenbaumer, Polym. Mater. Sci.Eng. 1985, 53, 79
19 M. Sato & H. Morii ,Polym. Commun. ,32 ,42 (1991)
20 Christoph J. Brabec et al., Adv. Funct. Mater. 15, 1193, 2005
21 D. H. Kim, etc, Langmuir, 21, 3203 2005
22 W. C. Johnson, J. B. Parsons, and M. C. Crew, “Nitrogencompound of gallium. I, II,”, J. Phys. Chem. Vol.36, 2588 (1932)
23 H. P. Maraska, D. A. Stevenson, and J. I. Pankove, “Violetluminescence of Mg – doped GaN+”, Appl. Phys. Lett. Vol.22, 303(1973)
24 H. Amano, N. Sawaki, I. Askasi, and Y. Toyoda, “Metalorganicvapor phase epitaxial growth of high quality GaN film using anAlN buffer layer”, Appl. Phys. Lett. Vol.48, 353 (1986)
25 H. Morkoc, “Nitride semiconductors and devices.” (1999)
26 A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie,“Quasiparticle band structure of AlN and GaN”, Phys. Rev. B
27 M.W.Lee, H.Z.Twu, C.-C.Chen, and C.-H.Chen, Appl. Phys. Lett. 79, 3693.(2001)
28 M.W.Lee, H.C.Hsueh, H.-M.Lin, and C.-C.Chen, Phys. Rev. B. 67, 161309.(2003)
29 Gang Li and Y. YANG,”High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends” Nature materials, 4, 864, (2005)
30 Gerald F. Malgas and Franscious R. Cummings “Interfacial analysis and properties of regioregular poly(3-hexylthiophene) spin-coated on an indium tin oxide-coated glass substrate” J. Mater. Sci. 43, 5599–5604 (2008)
31 R. O sterbacka, and C. P. An “Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals” Science 287, 839 (2000)
32 Christoph J. Brabec et al., Adv. Funct. Mater. 15, 1193, 2005
33 D. H. Kim, etc, Langmuir, 21, 3203 2005
34 D. H. Kim, etc, Adv. Funct. Mater. 15, 77 2005
35 Alex K.-Y. Jen et al “Polymer Solar Cells That Use Self-Assembled-Monolayer-Modified ZnO/Metals as Cathodes” Adv. Mater.20, 2376–2382 (2008)
36 Kim et al. “Photochemical Functionalization of Gallium Nitride Thin Films with Molecular and Biomolecular Layers “Langmuir, Vol. 22, No. 19, 2006
37 Ito et al. “Self-Assembled Monolayers of Alkylphosphonic Acid on GaNSubstrates” Langmuir, Vol. 24, No. 13, 2008
39 Arranz et al. “Influence of Surface Hydroxylation on 3-AminopropyltriethoxysilaneGrowth Mode during Chemical Functionalization of GaN Surfaces: An Angle-Resolved X-ray Photoelectron Spectroscopy Study” Langmuir, Vol. 24, No. 16, 2008