簡易檢索 / 詳目顯示

研究生: 林琦珍
Chi-Chen Lin
論文名稱: 樹枝狀鉑金雙金屬觸媒之研究
The Electrocatalytical Study of Pt-decorated Gold Dendrites for Methanol-oxidation
指導教授: 洪偉修
Hung, Wei-Hsiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 71
中文關鍵詞: 直接甲醇燃料電池陽極觸媒甲醇氧化
英文關鍵詞: direct methanol fuel cells (DMFCs), anode catalysts, methanol oxidation
論文種類: 學術論文
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用三種不同的方法在三維樹狀金電極上修飾少量的鉑,並探討應用於直接甲醇燃料電池的催化活性和表現。製備出的鉑金雙金屬觸媒會使用X射線光電子能譜(XPS)、穿透式電子顯微鏡(TEM)和循環伏安(CV)進行結構鑑定。
    首先,我們以浸泡電鍍法(IE)在樹狀金電極上修飾少量的鉑,研究發現,鉑會以類似二維的方式成長在金基材表面,而修飾了少量鉑的金電極在鹼性溶液下,對甲醇的電催化活性是較未修飾鉑的金電極來的好。再者,我們使用低濃度的氯鉑酸水溶液,添加葡萄糖作為還原劑,以無電電鍍的方式沉積鉑於金電極上。相較於未修飾鉑的金電極及大量沉積鉑的金電極,此方法製備出來的鉑金電極,對於甲醇電催化效果皆有較佳之表現。
    最後,我們以銅的低電位沉積,在金電極上修飾單層銅,再以氧化還原法將單層銅置換成單層鉑,成功的在金電極上修飾一至五層之鉑層。經過電化學分析結果,修飾單層的鉑金電極有最佳的催化活性及良好的抗毒化效果。
    我們的結果顯示鉑金之間的關係和對甲醇的電催化活性表現,並提供數個方法來控制鉑奈米粒子的分佈。我們製備出超低含量鉑的鉑金雙金屬觸媒,表現出優良的電催化活性及CO抗毒化效果。

    In this work, an ultralow or ultrathin Pt films fabricated on the nanostructure of the gold dendrites (GD) were investigated to act as novel electrodes for methanol electro-oxidation. The GD-Pt-type materials were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and cyclovoltammetry (CV).
    A small amount of Pt was deposited in a quasi-two-dimensional form onto the GD substrate through a simple immersion-electrodeposition (IE) method, forming nanostructured bimetallic GD-Pt catalysts. The ultrathin Pt film was also fabricated on GD through a simple way, in which only glucose and low concentration of H2PtCl4 were used. Such Pt-Au nanostructures have much higher structural stability than the bare GD. Compared with bare GD and high Pt loaded GD, the performances of methanol electro-oxidation on the low-Pt-content bimetallic film were greatly improved.
    The ultrathin Pt films from one to several atomic layers were also successfully decorated onto GD by utilizing under potential deposition (UPD) of Cu onto the Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers could be controlled precisely by repeating the Cu-UPD-RRR cycles. The electrocatalytic activity of GD-Pt exhibited an interesting dependence of surface structure in electrooxidation reactions of methanol.
    Our results showed the relationship between nanosturcture and electrocatalytic performance towards methanol oxidation and provided a method to control the distribution of Pt nanoparticles. The resulting Au/Pt bimetallic nanocatalysts exhibited the excellent electrocatalytic activity and enhanced poison tolerance. Thus, the success in the fabrication of GD-Pt-type materials provides a new method to prepare electrocatalysts with ultralow Pt loading and high utilization, which are of great significance in energy-related applications, such as the direct methanol fuel cells (DMFCs).

    中文摘要 i 英文摘要 ii 謝誌 iv 目錄 v 圖目錄 viii 表目錄 xi 壹、緒論 1 1.1 前言 1 1.2 直接甲醇燃料電(DMFC) 4 1.2.1 直接甲醇燃料電池( DMFC)之陽極觸媒 4 1.2.2 鉑金對甲醇催化 6 貳、文獻回顧 8 2.1 電化學方法 8 2.1.1 電化學沉積(electrochemical deposition) 8 2.1.2 脈衝式電流電化學沉積法(Pulsed Current Electrolysis) 10 2.1.3 低電位沉積法 11 2.1.4 銅在金上的低電位電鍍 14 2.2 無電電鍍 15 2.3 三維樹狀金電極 16 叄、實驗與儀器 19 3.1 實驗藥品 19 3.2 實驗流程圖 20 3.3 樹狀金電極製備 20 3.4 以IE法修飾鉑於金電極上 21 3.5 以葡萄糖還原法修飾鉑於金電極上 21 3.6 以銅的低電位沉積修飾鉑於金電極上 22 3.7 材料分析與鑑定 23 3.7.1 粉末X光繞射儀(powder X-ray diffraction,XRD) 23 3.7.2 掃瞄式電子顯微鏡(scanning electron microscope SEM) 25 3.7.3 穿透式電子顯微鏡(transmission electron microscope, TEM) 25 3.7.4 X-光光電子光譜分析儀(X-ray photoelectron spectro-scopy,XPS) 26 3.7.5 循環伏安法(cyclic voltammetry) 29 肆 結果與討論 32 4.1 樹狀金電極(Gold Dendrite,GD ) 32 4.1.1 樹狀金電極在酸性和鹼性介質中的循環伏安特性 32 4.1.2 樹狀金電極在鹼性條件下對甲醇之催化活性表現 34 4.2 以IE法製備的鉑-金電極 37 4.2.1 XRD與TEM分析 37 4.2.2 循環伏安 40 4.2.3甲醇催化活性測試 41 4.3 以葡萄糖還原鉑離子於金電極表面 44 4.3.1 XRD與TEM分析 44 4.3.2 循環伏安 45 4.3.3 甲醇催化活性測試 46 4.4 以銅的低電位沉積法製備金屬觸媒 48 4.4.1 銅低電位沉積於金基材 48 4.4.2 循環伏安 52 4.4.3 XPS與TEM分析 53 4.4.4 甲醇催化活性測試 57 伍、結論 67 陸、參考文獻 69 圖目錄 圖1-1 甲醇在鉑觸媒上的反應路徑 5 圖2-1 四種不同獨立核種 9 圖2-2 交互作用核種示意圖 9 圖2-3 (a)脈衝式電流電化學沉積法之電化學參數示意圖與(b)脈衝式電流電化學沉積物理意義說明圖 11 圖2-4 在不同還原電位下之金屬沉積在表面狀態圖 12 圖2-5 低電位沉積之循環伏安圖 12 圖2-6 銅在金(111)之低電位沉積循環伏安圖 15 圖2-7 吸附在樹狀金電極上之CYST的脫附行為 16 圖2-8 三維樹狀金電極的成長機制 17 圖2-9 樹狀金電極之SEM圖 18 圖3-1 製備GD-Ptn電極之示意圖 23 圖3-2 光電子發射概略圖 27 圖3-3 半球形聚焦電子能量分析儀 28 圖3-4 電化學系統裝置示意圖 30 圖3-5 電位對時間之波形圖 31 圖3-6 (a)電位對時間的波形 (b)對應的循環伏安CV圖 31 圖4-1 GD和poly-Au在酸性溶液之循環伏圖 33 圖4-2 GD和poly-Au在鹼性溶液之循環伏圖 33 圖4-3 GD在0.5M NaOH+1M CH3OH溶液中之循環伏安圖 36 圖4-4 GD-IE3之TEM圖 37 圖4-5 GD-IEn之XPS圖譜 38 圖4-6 XPS圖譜(a)GD-Pt-IE1(b) GD-Pt-IE2(c) GD-Pt-IE3 39 圖4-7 GD-Pt(IE)電極在0.5M H2SO4溶液中之循環伏安圖 41 圖4-8 GD-Pt(IE)電極在1M CH3OH + 0.5M H2SO4溶液循環伏安圖 43 圖4-9 GD-Pt(IE)電極之計時電流 43 圖4-10 為金電極沉積鉑之前和之後的TEM圖 45 圖4-11 GD-1mM在0.5M H2SO4溶液中之循環伏安圖 46 圖4-12 GD-1mM在1M CH3OH + 0.5M NaOH溶液之循環伏安圖 47 圖4-13 GD-1mM在1M CH3OH + 0.5M H2SO4溶液中之計時電流 47 圖4-14 GD在1mM CuSO4 + 0.5M H2SO4溶液中之循環伏安圖 49 圖4-15 以不同電位沉積銅之剝除峰,沉積時間180s 50 圖4-16 以不同電位沉積銅之剝除峰的電量,沉積時間180s 51 圖4-17 以不同時間沉積銅之剝除峰,沉積電位0V 51 圖4-18 鉑金電極在1M CH3OH + 0.5M H2SO4溶液之循環伏安圖 53 圖4-19 GD-Ptn之TEM(a,d) GD-Pt1(b,e) GD-Pt3(c,f) GD-Pt5 54 圖4-20 GD-Ptn之XPS(a,b) GD-Pt1(c,d) GD-Pt3(e,f) GD-Pt5 55 圖4-21 GD-Ptn之XPS-Pt 56 圖4-22 GD-Pt1在1M CH3OH + 0.5M H2SO4溶液中之循環伏安圖 58 圖4-23 GD-Pt2在1M CH3OH + 0.5M H2SO4溶液中之循環伏安圖 59 圖4-24 GD-Pt3在1M CH3OH + 0.5M H2SO4溶液中之循環伏安圖 60 圖4-25 GD-Pt4在1M CH3OH + 0.5M H2SO4溶液中之循環伏安圖 61 圖4-26 GD-Pt5在1M CH3OH + 0.5M H2SO4溶液中之循環伏安圖 62 圖4-27 GD-Ptn在1M CH3OH + 0.5M H2SO4溶液中抗毒化效果 63 圖4-28 GD-Ptn電極在1M CH3OH + 0.5M H2SO4溶液中之甲醇氧化極化曲線 64 圖4-29 不同層之鉑金電極在不同電位下之計時電流表現 65 圖4-30 GD-Ptn在相同電位下以質量均一化之計時電流表現 66 圖4-31 GD-Pt1在1M CH3OH + 0.5M NaOH溶液中之循環伏安圖 66 表目錄 表1-1 燃料電池的分類 3 表3-1 GD電鍍條件 21 表4-1 GD-Pt(IE)其鉑之還原態及氧化態之比例 40 表4-2 GD-Pt(IE) 之電化學數值 44 表4-3 GD-1mM之電化學數值 48 表4-4 GD-Ptn其鉑之還原態及氧化態之比例 57 表4-5 GD-Pt1之電化學數值 58 表4-6 GD-Pt2之電化學數值 59 表4-7 GD-Pt3之電化學數值 60 表4-8 GD-Pt4之電化學數值 61 表4-9 GD-Pt5之電化學數值 62

    (1)Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1, 5.
    (2)(a) Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. Journal of Physical Chemistry B 2003, 107, 6292(b) Gasteiger, H. A.; Markovic, N. M.; Ross, P. N. Journal of Physical Chemistry 1995, 99, 8290(c) Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M. Journal of Physical Chemistry B 2001, 105, 8097(d) Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R. Catalysis Today 1997, 38, 425.
    (3)Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. Journal of Physical Chemistry 1993, 97, 12020.
    (4)Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. Journal of Power Sources 2006, 155, 95.
    (5)Iwasita, T.; Hoster, H.; John-Anacker, A.; Lin, W. F.; Vielstich, W. Langmuir 2000, 16, 522.
    (6)Frelink, T.; Visscher, W.; Vanveen, J. A. R. Surface Science 1995, 335, 353.
    (7)Hamnett, A. Catalysis Today 1997, 38, 445.
    (8)Liu, Z.; Reed, D.; Kwon, G.; Shamsuzzoha, M.; Nikles, D. E. J. Phys. Chem. C 2007, 111, 14223.
    (9)Yajima, T.; Uchida, H.; Watanabe, M. Journal of Physical Chemistry B 2004, 108, 2654.
    (10)Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
    (11)Haruta, M. Nature 2005, 437, 1098.
    (12)Haruta, M. Chem. Rec. 2003, 3, 75.
    (13)Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 9374.
    (14)Murphy, C. J. Science 2002, 298, 2139.
    (15)Kim, T. S.; Stiehl, J. D.; Reeves, C. T.; Meyer, R. J.; Mullins, C. B. J. Am. Chem. Soc. 2003, 125, 2018.
    (16)Zhong, C. J.; Maye, M. M. Advanced Materials 2001, 13, 1507.
    (17)Luo, J.; Jones, V. W.; Maye, M. M.; Han, L.; Kariuki, N. N.; Zhong, C. J. J. Am. Chem. Soc. 2002, 124, 13988.
    (18)Maye, M. M.; Luo, J.; Lin, Y. H.; Engelhard, M. H.; Hepel, M.; Zhong, C. J. Langmuir 2003, 19, 125.
    (19)D. A. Skoog; F. J. Holler; T. A. Nieman Principles of Instrumental Analysis,Thomson Laering, Inc.,Singapore,563,1998.
    (20)R. K. Pandey; S. N. Sahu; S. Chandra Handbook of Semiconductor Electrodeposition,Marcel Dekker, Inc., New York, 64, 1996.
    (21)M. Paunovic; M. Schlesinger Fundamentals of Electrochemical Deposition,John Wiley & Sons,Inc, New York, 110, 1998.
    (22)M. Paunovic; M. Schlesinger Fundamentals of Electrochemical Deposition,John Wiley & Sons,Inc, New York, 111, 1998.
    (23)Nomura, K.; Shibata, N.; Maeda, M. Journal of the Electrochemical Society 2002, 149, F76.
    (24)Herrero, E.; Buller, L. J.; Abruna, H. D. Chem. Rev. 2001, 101, 1897.
    (25)Kolb, D. M. JohnWiley & Sons New York 1978, 11, 125.
    (26)Kolb, D. M.; Przasnyski, M.; Gerischer, H. J. Electroanal. Chem. 1974, 54.
    (27)Sudha, V.; Sangaranarayanan, M. V. Journal of Physical Chemistry B 2002, 106, 2699.
    (28)Hachiya, T.; Honbo, H.; Itaya, K. Journal of Electroanalytical Chemistry 1991, 315, 275.
    (29)Holzle, M. H.; Retter, U.; Kolb, D. M. Journal of Electroanalytical Chemistry 1994, 371, 101.
    (30)Brankovic, S. R.; Wang, J. X.; Adzic, R. R. Surface Science 2001, 474, L173.
    (31)Mrozek, M. F.; Xie, Y.; Weaver, M. J. Analytical Chemistry 2001, 73, 5953.
    (32)林苔瑄,"以電化學法製備金奈米結構及其應用之研究",國立臺灣師範大學化學系博士論文, 2009.
    (33)汪建民,材料分析 ; 中國材料科學學會, 1998.
    (34)A. J. Bard; L. R. Faulkner Electrochemical Methods fundamentals and application, John Wiley & Sons, Inc, New York, 227, 2001.
    (35)Kramer, D.; Viswanath, R. N.; Weissmuller, J. Nano Letters 2004, 4, 793.
    (36)Silva, F.; Martins, A. Electrochim. Acta 1998, 44, 919.
    (37)Yong, F. F.; Ma, H. Y.; Wang, X. N.; Feng, X. L.; Huang, S. X.; Jiang, J. Z.; Chen, S. H. Electrochim. Acta 2006, 51, 3743.
    (38)Strbac, S.; Adzic, R. R. Journal of Electroanalytical Chemistry 1996, 403, 169.
    (39)Angersteinkozlowska, H.; Conway, B. E.; Barnett, B.; Mozota, J. Journal of Electroanalytical Chemistry 1979, 100, 417.
    (40)(a) Chen, A. C.; Lipkowski, J. Journal of Physical Chemistry B 1999, 103, 682(b) Burke, L. D.; Nugent, P. F. Gold Bulletin 1998, 31, 39.
    (41)Borkowska, Z.; Tymosiak-Zielinska, A.; Shul, G. Electrochim. Acta 2004, 49, 1209.
    (42)Tremiliosi-Filho, G.; Gonzalez, E. R.; Motheo, A. J.; Belgsir, E. M.; Leger, J. M.; Lamy, C. Journal of Electroanalytical Chemistry 1998, 444, 31.
    (43)Assiongbon, K. A.; Roy, D. Surface Science 2005, 594, 99.
    (44)Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. J. Phys. Chem. C 2007, 111, 10382.
    (45)Prabhuram, J.; Manoharan, R. Journal of Power Sources 1998, 74, 54.
    (46)Kumar, S.; Zou, S. Z. Langmuir 2007, 23, 7365.
    (47)(a) Mayrhofer, K. J. J.; Arenz, M.; Blizanac, B. B.; Stamenkovic, V.; Ross, P. N.; Markovic, N. M. Electrochim. Acta 2005, 50, 5144(b) Maillard, F.; Eikerling, M.; Cherstiouk, O. V.; Schreier, S.; Savinova, E.; Stimming, U. Faraday Discussions 2004, 125, 357(c) Maillard, F.; Schreier, S.; Hanzlik, M.; Savinova, E. R.; Weinkauf, S.; Stimming, U. Physical Chemistry Chemical Physics 2005, 7, 385.
    (48)Matthews, J. W.; Jesser, W. A. Acta Metallurgica 1967, 15, 595.
    (49)Uosaki, K.; Ye, S.; Naohara, H.; Oda, Y.; Haba, T.; Kondo, T. Journal of Physical Chemistry B 1997, 101, 7566.
    (50)Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845.
    (51)Liu, H. B.; Pal, U.; Ascencio, J. A. J. Phys. Chem. C 2008, 112, 19173.
    (52)Rolison, D. R. Science 2003, 299, 1698.

    無法下載圖示 本全文未授權公開
    QR CODE