研究生: |
林琦珍 Chi-Chen Lin |
---|---|
論文名稱: |
樹枝狀鉑金雙金屬觸媒之研究 The Electrocatalytical Study of Pt-decorated Gold Dendrites for Methanol-oxidation |
指導教授: |
洪偉修
Hung, Wei-Hsiu |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 直接甲醇燃料電池 、陽極觸媒 、甲醇氧化 |
英文關鍵詞: | direct methanol fuel cells (DMFCs), anode catalysts, methanol oxidation |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用三種不同的方法在三維樹狀金電極上修飾少量的鉑,並探討應用於直接甲醇燃料電池的催化活性和表現。製備出的鉑金雙金屬觸媒會使用X射線光電子能譜(XPS)、穿透式電子顯微鏡(TEM)和循環伏安(CV)進行結構鑑定。
首先,我們以浸泡電鍍法(IE)在樹狀金電極上修飾少量的鉑,研究發現,鉑會以類似二維的方式成長在金基材表面,而修飾了少量鉑的金電極在鹼性溶液下,對甲醇的電催化活性是較未修飾鉑的金電極來的好。再者,我們使用低濃度的氯鉑酸水溶液,添加葡萄糖作為還原劑,以無電電鍍的方式沉積鉑於金電極上。相較於未修飾鉑的金電極及大量沉積鉑的金電極,此方法製備出來的鉑金電極,對於甲醇電催化效果皆有較佳之表現。
最後,我們以銅的低電位沉積,在金電極上修飾單層銅,再以氧化還原法將單層銅置換成單層鉑,成功的在金電極上修飾一至五層之鉑層。經過電化學分析結果,修飾單層的鉑金電極有最佳的催化活性及良好的抗毒化效果。
我們的結果顯示鉑金之間的關係和對甲醇的電催化活性表現,並提供數個方法來控制鉑奈米粒子的分佈。我們製備出超低含量鉑的鉑金雙金屬觸媒,表現出優良的電催化活性及CO抗毒化效果。
In this work, an ultralow or ultrathin Pt films fabricated on the nanostructure of the gold dendrites (GD) were investigated to act as novel electrodes for methanol electro-oxidation. The GD-Pt-type materials were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and cyclovoltammetry (CV).
A small amount of Pt was deposited in a quasi-two-dimensional form onto the GD substrate through a simple immersion-electrodeposition (IE) method, forming nanostructured bimetallic GD-Pt catalysts. The ultrathin Pt film was also fabricated on GD through a simple way, in which only glucose and low concentration of H2PtCl4 were used. Such Pt-Au nanostructures have much higher structural stability than the bare GD. Compared with bare GD and high Pt loaded GD, the performances of methanol electro-oxidation on the low-Pt-content bimetallic film were greatly improved.
The ultrathin Pt films from one to several atomic layers were also successfully decorated onto GD by utilizing under potential deposition (UPD) of Cu onto the Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers could be controlled precisely by repeating the Cu-UPD-RRR cycles. The electrocatalytic activity of GD-Pt exhibited an interesting dependence of surface structure in electrooxidation reactions of methanol.
Our results showed the relationship between nanosturcture and electrocatalytic performance towards methanol oxidation and provided a method to control the distribution of Pt nanoparticles. The resulting Au/Pt bimetallic nanocatalysts exhibited the excellent electrocatalytic activity and enhanced poison tolerance. Thus, the success in the fabrication of GD-Pt-type materials provides a new method to prepare electrocatalysts with ultralow Pt loading and high utilization, which are of great significance in energy-related applications, such as the direct methanol fuel cells (DMFCs).
(1)Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1, 5.
(2)(a) Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. Journal of Physical Chemistry B 2003, 107, 6292(b) Gasteiger, H. A.; Markovic, N. M.; Ross, P. N. Journal of Physical Chemistry 1995, 99, 8290(c) Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M. Journal of Physical Chemistry B 2001, 105, 8097(d) Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R. Catalysis Today 1997, 38, 425.
(3)Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. Journal of Physical Chemistry 1993, 97, 12020.
(4)Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. Journal of Power Sources 2006, 155, 95.
(5)Iwasita, T.; Hoster, H.; John-Anacker, A.; Lin, W. F.; Vielstich, W. Langmuir 2000, 16, 522.
(6)Frelink, T.; Visscher, W.; Vanveen, J. A. R. Surface Science 1995, 335, 353.
(7)Hamnett, A. Catalysis Today 1997, 38, 445.
(8)Liu, Z.; Reed, D.; Kwon, G.; Shamsuzzoha, M.; Nikles, D. E. J. Phys. Chem. C 2007, 111, 14223.
(9)Yajima, T.; Uchida, H.; Watanabe, M. Journal of Physical Chemistry B 2004, 108, 2654.
(10)Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
(11)Haruta, M. Nature 2005, 437, 1098.
(12)Haruta, M. Chem. Rec. 2003, 3, 75.
(13)Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 9374.
(14)Murphy, C. J. Science 2002, 298, 2139.
(15)Kim, T. S.; Stiehl, J. D.; Reeves, C. T.; Meyer, R. J.; Mullins, C. B. J. Am. Chem. Soc. 2003, 125, 2018.
(16)Zhong, C. J.; Maye, M. M. Advanced Materials 2001, 13, 1507.
(17)Luo, J.; Jones, V. W.; Maye, M. M.; Han, L.; Kariuki, N. N.; Zhong, C. J. J. Am. Chem. Soc. 2002, 124, 13988.
(18)Maye, M. M.; Luo, J.; Lin, Y. H.; Engelhard, M. H.; Hepel, M.; Zhong, C. J. Langmuir 2003, 19, 125.
(19)D. A. Skoog; F. J. Holler; T. A. Nieman Principles of Instrumental Analysis,Thomson Laering, Inc.,Singapore,563,1998.
(20)R. K. Pandey; S. N. Sahu; S. Chandra Handbook of Semiconductor Electrodeposition,Marcel Dekker, Inc., New York, 64, 1996.
(21)M. Paunovic; M. Schlesinger Fundamentals of Electrochemical Deposition,John Wiley & Sons,Inc, New York, 110, 1998.
(22)M. Paunovic; M. Schlesinger Fundamentals of Electrochemical Deposition,John Wiley & Sons,Inc, New York, 111, 1998.
(23)Nomura, K.; Shibata, N.; Maeda, M. Journal of the Electrochemical Society 2002, 149, F76.
(24)Herrero, E.; Buller, L. J.; Abruna, H. D. Chem. Rev. 2001, 101, 1897.
(25)Kolb, D. M. JohnWiley & Sons New York 1978, 11, 125.
(26)Kolb, D. M.; Przasnyski, M.; Gerischer, H. J. Electroanal. Chem. 1974, 54.
(27)Sudha, V.; Sangaranarayanan, M. V. Journal of Physical Chemistry B 2002, 106, 2699.
(28)Hachiya, T.; Honbo, H.; Itaya, K. Journal of Electroanalytical Chemistry 1991, 315, 275.
(29)Holzle, M. H.; Retter, U.; Kolb, D. M. Journal of Electroanalytical Chemistry 1994, 371, 101.
(30)Brankovic, S. R.; Wang, J. X.; Adzic, R. R. Surface Science 2001, 474, L173.
(31)Mrozek, M. F.; Xie, Y.; Weaver, M. J. Analytical Chemistry 2001, 73, 5953.
(32)林苔瑄,"以電化學法製備金奈米結構及其應用之研究",國立臺灣師範大學化學系博士論文, 2009.
(33)汪建民,材料分析 ; 中國材料科學學會, 1998.
(34)A. J. Bard; L. R. Faulkner Electrochemical Methods fundamentals and application, John Wiley & Sons, Inc, New York, 227, 2001.
(35)Kramer, D.; Viswanath, R. N.; Weissmuller, J. Nano Letters 2004, 4, 793.
(36)Silva, F.; Martins, A. Electrochim. Acta 1998, 44, 919.
(37)Yong, F. F.; Ma, H. Y.; Wang, X. N.; Feng, X. L.; Huang, S. X.; Jiang, J. Z.; Chen, S. H. Electrochim. Acta 2006, 51, 3743.
(38)Strbac, S.; Adzic, R. R. Journal of Electroanalytical Chemistry 1996, 403, 169.
(39)Angersteinkozlowska, H.; Conway, B. E.; Barnett, B.; Mozota, J. Journal of Electroanalytical Chemistry 1979, 100, 417.
(40)(a) Chen, A. C.; Lipkowski, J. Journal of Physical Chemistry B 1999, 103, 682(b) Burke, L. D.; Nugent, P. F. Gold Bulletin 1998, 31, 39.
(41)Borkowska, Z.; Tymosiak-Zielinska, A.; Shul, G. Electrochim. Acta 2004, 49, 1209.
(42)Tremiliosi-Filho, G.; Gonzalez, E. R.; Motheo, A. J.; Belgsir, E. M.; Leger, J. M.; Lamy, C. Journal of Electroanalytical Chemistry 1998, 444, 31.
(43)Assiongbon, K. A.; Roy, D. Surface Science 2005, 594, 99.
(44)Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. J. Phys. Chem. C 2007, 111, 10382.
(45)Prabhuram, J.; Manoharan, R. Journal of Power Sources 1998, 74, 54.
(46)Kumar, S.; Zou, S. Z. Langmuir 2007, 23, 7365.
(47)(a) Mayrhofer, K. J. J.; Arenz, M.; Blizanac, B. B.; Stamenkovic, V.; Ross, P. N.; Markovic, N. M. Electrochim. Acta 2005, 50, 5144(b) Maillard, F.; Eikerling, M.; Cherstiouk, O. V.; Schreier, S.; Savinova, E.; Stimming, U. Faraday Discussions 2004, 125, 357(c) Maillard, F.; Schreier, S.; Hanzlik, M.; Savinova, E. R.; Weinkauf, S.; Stimming, U. Physical Chemistry Chemical Physics 2005, 7, 385.
(48)Matthews, J. W.; Jesser, W. A. Acta Metallurgica 1967, 15, 595.
(49)Uosaki, K.; Ye, S.; Naohara, H.; Oda, Y.; Haba, T.; Kondo, T. Journal of Physical Chemistry B 1997, 101, 7566.
(50)Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845.
(51)Liu, H. B.; Pal, U.; Ascencio, J. A. J. Phys. Chem. C 2008, 112, 19173.
(52)Rolison, D. R. Science 2003, 299, 1698.