簡易檢索 / 詳目顯示

研究生: 張貫宇
Chang, Kuan-Yu
論文名稱: 一種增進穿隧場效電晶體性能的新穎電流增強機制研究
Performance Enhancement of Tunneling Field Effect Transistor by a New Current Enhancing Scheme
指導教授: 劉傳璽
Liu, Chuan-Hsi
莊紹勳
Chung, Shao-Shiun
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 96
中文關鍵詞: 穿隧場效電晶體半導體模擬工具垂直穿隧機制異質接面
英文關鍵詞: Tunnel FET, TCAD, Vertical tunneling mechanism, Heterojunction
論文種類: 學術論文
相關次數: 點閱:638下載:47
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去數十年來,金氧半場效電晶體 (Metal-Oxide-Semiconductor FieldEffect Transistor, MOSFET)在半導體工程中扮演著相當重要的角色,但元件尺寸遵循著摩爾定律的法則微縮至今,亦遭遇到許多困難需要解決。穿隧型場效電晶體 (Tunnel Field Effect Transistor, TFET) 被視為其中一種相當有潛力能取代MOSFET 的元件,由於TFET 能夠擁有低於60 mV/dec 的次臨界擺幅,以及非常小的漏電流,這些特點有利於VD 的微縮,降低能源消耗的問題,因此適合應用在低功率的元件裡。但目前研究文獻均指出,TFET 最大的致命傷在於開狀態的電流值過低,大幅限制了TFET 的發展性。因此本研究利用半導體模擬工具 (Technology Computer Aided Design, TCAD),設計出一個具有垂直穿隧機制的結構,並探討在n 型與p 型TFET 中,優化元件參數與使用異質接面的方式提升TFET 性能,最後將具有垂直穿隧與側向穿隧機制的結構進行整合。結果顯示擁有大面積的垂直穿隧機制的確能夠有效提升穿隧電流,使用矽鍺與矽所形成的異質接面亦能夠幫助穿隧效應的產生,最後將兩種穿隧機制整合在同一元件上的概念,結果也顯示能夠提升元件的整體開電流,幫助克服TFET 開電流值過小的問題。

    Tunnel field effect transistor (TFET) has attracted attention for sub-60mV/decade subthreshold swing and very small OFF current (IOFF), and it serves as an attractive candidate for low-power applications. But one of the major engineering challenges of TFET is the boosting of its ION. A minimized subthreshold swing with a high on-current and low off-current is the key requirement for a TFET to be an ideal switching device. In this investigation, a novel vertical tunneling mechanism design to achieve more tunnel area of TFET is proposed to analyze the characteristic of ID-VG in TFET by two-dimensional(2D) Technology Computer Aided Design (TCAD). The analytic results show that vertical tunneling mechanism combined with silicon germanium (SiGe) heterojunction can be efficiently utilized to enhance the performance of TFET. Finally, we have demonstrated simple concepts to improve and optimize the contribution of vertical tunneling current in a combined vertical and lateral TFET. The results showed that the performance of TFET can be improved by the contribution from lateral tunneling.

    第一章 緒論 1 1.1 電晶體的微縮 1 1.2 穿隧型場效電晶體 1 1.3 論文研究方向 2 第二章 文獻探討 3 2.1 金氧半場效電晶體 3 2.1.1 電晶體之結構 3 2.1.2 電晶體之操作性能 6 2.1.2.1 輸出特性 6 2.1.2.2次臨界特性 8 2.2 先進製程元件 9 2.2.1 應變矽技術 9 2.2.2 鰭式電晶體 13 2.3穿隧型場效電晶體 14 2.3.1 元件基本特性 15 2.3.2 基礎穿隧理論 17 2.3.3 性能優化設計 18 2.3.3.1 使用異質接面方式優化TFET 19 2.3.3.2 設計結構方式優化TFET 25 2.3.3.3 改變穿隧方式優化TFET 33 第三章 模擬與研究方法 41 3.1 TCAD模擬軟體簡介 41 3.2 元件結構編輯工具 42 3.3 電特性模擬工具 43 第四章 傳統平面TFET之元件特性探討與優化 44 4.1 不同介電層厚度對電晶體特性之影響 45 4.2 不同摻雜濃度對電晶體特性之影響 46 4.3 不同通道長度對電晶體特性之影響 51 第五章 雙向穿隧型TFET之元件設計與優化 53 5.1 不同結構對電晶體特性之影響 53 5.2 優化元件模擬參數 69 5.3 不同磊晶材料對元件特性之探討 78 5.4 結合垂直穿隧與側向穿隧之結構探討 84 第六章 結論與未來展望 87 6.1 穿隧型TFET電晶體特性 87 6.2 未來展望 92 參考文獻 93

    [1] 劉傳璽,陳進來,第三版,半導體物理元件與製程-理論與實務,五南文化出版社,2006。
    [2] 鄭晃忠,劉傳璽,新世代積體電路製程技術,東華書局,2011。
    [3] M. Chu, Y. Sun, U. Aghoram and S. E. Thompson, “Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs”, Annual Review of Materials Research, vol. 39, pp. 203-229, 2009.
    [4] S. E. Thompson, G. Sun, Y. S. Choi and T. Nishida, “Uniaxial-Process-Induced Strained-Si: Extending the CMOS Roadmap”, IEEE Transactions on Electron Devices, vol. 53, pp. 1010-1020, 2006.
    [5] X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor and C. Hu, “Sub 50-nm FinFET: PMOS”, in IEDM Technical Digest, pp. 66-70, 1999.
    [6] S. H. Tang, L. Chang, N. Lindert, Y. K. Choi, W. C. Lee, X. Huang, V. Subramanian, J. Bokor, T. J. King and C. Hu, “FinFET - A Quasi-Planar Double-Gate MOSFET”, IEEE International Solid-State Circuits Conference, pp. 118-119, 2001.
    [7] J. Feng, R. Woo, S. Chen, Y. Liu, P. B. Griffin and J. D. Plummer, “P-Channel Germanium FinFET Based on Rapid Melt Growth”, IEEE Electron Device Letters, vol. 28, pp. 637-639, 2007.
    [8] T. Irisawa, T. Numata, T. Tezuka, K. Usuda, S. Nakaharai, N. Hirashita, N. Sugiyama, E. Toyoda and S. Takagi, “High Performance Multi-Gate pMOSFETs Using Uniaxially-Strained SGOI Channels”, in IEDM Technical Digest, pp. 709-712, 2005.
    [9] W. P. Bai, N. Lu, A. Ritenour, M. L. Lee, D. A. Antoniadis and D. L. Kwong, “Ge n-MOSFETs on Lightly Doped Substrates with High-κ Dielectric and TaN Gate”, IEEE Electron Device Letters, vol. 27, pp. 175-178, 2006.
    [10] P. F. Wang, “Complementary Tunneling-FETs (CTFET) in CMOS Technology”, Technical University of Munich, Doctor Dissertation, Oct., 2003.
    [11] N. Patel, A. Ramesh and S. Mahapatra, “Drive Current Boosting of n-type Tunnel FET with Strained SiGe Layer at Source”, Microelectronics Journal, vol. 39, pp. 1671-1677, 2008.
    [12] S. M. Sze, “Physics of Semiconductor Devices”, Wiley, 1969.
    [13] H. G. Virani, R. B. Rao and A. Kottantharayil, “Investigation of Novel Si/SiGe Heterostructures and Gate Induced Source Tunneling for Improvement of p-Channel Tunnel Field-Effect Transistors”, Japanese Journal of Applied Physics, vol. 49, 04DC12, 2010.
    [14] C. H. Shih and N. D. Chien, “Sub-10-nm Tunnel Field-Effect Transistor with Graded Si/Ge Heterojunction”, IEEE Electron Device Letters, vol. 32, pp. 1498-1500, 2011.
    [15] P. S. Gupta, S. Kanungo, H. Rahaman, K. Sinha and P. S. Dasgupta, “An Extremely Low Sub-Threshold Swing UTB SOI Tunnel-FET Structure Suitable for Low-Power Applications”, International Journal of Applied Physics and Mathematics, vol. 2, pp. 240-243, 2012
    [16] K. K. Bhuwalka, J. Schulze and I. Eisele, “Scaling the Vertical Tunnel FET with Tunnel Bandgap Modulation and Gate Workfunction Engineering”, IEEE Transactions on Electron Devices, vol. 55, pp. 909-917, 2005.
    [17] K. K. Bhuwalka, J. Schulze and I. Eisele, “A Simulation Approach to Optimize the Electrical Parameters of a Vertical Tunnel FET”, IEEE Transactions on Electron Devices, vol. 52, pp. 1541-1547, 2005.
    [18] M. Kim, Y. Wakabayashi, R. Nakane, M. Yokoyama, M. Takenaka and S. Takagi, “Electrical Characteristics of Ge/Si Hetero-Junction Tunnel Field-Effect Transistors and Their Post Annealing Effects”, International Conference on Solid State Devices and Materials, pp. 624-625, 2013.
    [19] C. Hu, D. Chou, P. Patel and A. Bowonder, “Green Transistor - A VDD Scaling Path for Future Low Power ICs”, International Symposium on VLSI Technology, Systems and Applications, pp. 14-15, 2008.
    [20] L. Lattanzio, L. D. Michielis and A. M. Ionescu, “Complementary Germanium Electron–Hole Bilayer Tunnel FET for Sub-0.5-V Operation”, IEEE Electron Device Letters, vol. 33, pp. 167-169, 2012.
    [21] W. Hsu, J. Mantey, L. F. Register and S. K. Banerjee, “Strained-Si /Strained-Ge Type-II Staggered Heterojunction Gate-Normal-Tunneling Field-Effect Transistor”, Applied Physics Letters, vol. 103, 093501, 2013.
    [22] 韓雁,第一版,半導體器件TCAD設計與應用,電子工業出版社,2013。
    [23] Synopsys, TCAD Sentaurus Device Manual, H-2013.03, 2013.
    [24] W. Y. Choi, B. G. Park, J. D. Lee and T. J. K. Liu, “Tunneling Field-Effect Transistors (TFETs) with Subthreshold Swing (SS) Less Than 60 mV/dec”, IEEE Electron Device Letters, vol. 28, pp. 743-745, 2007.
    [25] Q. Zhang and A. Seabaugh, “Can the Interband Tunnel FET Outperform Si CMOS?”, Device Research Conference, pp. 73-74, 2008.
    [26] K. Jeon, W. Y. Loh, P. Patel, Y. K. Chang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H. H. Tseng, R. Jammy, T. J. K. Liu and C. Hu, “Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing”, in VLSI Symposium Technical Digest, pp. 121-122, 2010.
    [27] F. Mayer, C. L. Royer, J. F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali and S. Deleonibus, “Impact of SOI, Si1-xGexOI and GeOI Substrates on CMOS Compatible Tunnel FET Performance”, in IEDM Technical Digest, pp. 1-5, 2008.
    [28] Q. Huang, R. Huang, Z. Zhan, Y. Qiu, W. Jiang, C. Wu and Y. Wang, “A Novel Si Tunnel FET with 36mV/dec Subthreshold Slope Based on Junction Depleted-Modulation through Striped Gate Configuration”, in IEDM Technical Digest, pp. 187-190, 2012.
    [29] R. Jhaveri, V. Nagavarapu and J. C. S. Woo, “Effect of Pocket Doping and Annealing Schemes on the Source-Pocket Tunnel Field-Effect Transistor”, IEEE Transactions on Electron Devices, vol. 58, pp. 80-86, 2011.
    [30] J. T. Smith, C. Sandow, S. Das, R. A. Minamisawa, S. Mantl and J. Appenzeller, “Silicon Nanowire Tunneling Field-Effect Transistor Arrays: Improving Subthreshold Performance Using Excimer Laser Annealing”, IEEE Transactions on Electron Devices, vol. 58, pp. 1822-1829, 2011.
    [31] A. Villalon, C. L. Royer, M. Cassé, D. Cooper, B. Prévitali, C. Tabone, J. M. Hartmann, P. Perreau, P. Rivallin, J. F. Damlencourt, F. Allain, F. Andrieu, O. Weber, O. Faynot and T. Poiroux, “Strained Tunnel FETs with Record ION: First Demonstration of ETSOI TFETs with SiGe Channel and RSD”, in VLSI Symposium Technical Digest, pp. 49-50, 2012.

    下載圖示
    QR CODE