研究生: |
柯思妤 |
---|---|
論文名稱: |
含L-組胺酸之掌性金屬錯合物之自組裝合成、結構多變性與性質研究 Self-Assembly, Structural Diversity and Properties of L-histidine-containing Chiral Zinc(II), Nickel(II) and Cadmium(II) Metal Compounds |
指導教授: |
呂光烈
Lu, Kuang-Lieh 吳學亮 Wu, Hsyueh-Liang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 132 |
中文關鍵詞: | 掌性金屬錯合物 、L-組胺酸 、自組裝 |
英文關鍵詞: | chiral, metal-organic framework, L-histidine, self-assembly |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:60 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究主題為利用室溫自組裝的方式,合成具有超分子結構的金屬錯合物。利用紅外線光譜儀 (IR)、元素分析儀 (EA)、熱重分析儀 (TGA)、X光單晶與粉末繞射儀來鑑定結構與量測性質。本實驗所使用的有機配基包括: L-2-amino-3-(1H-imidazol-4-yl)propanic acid (L-histidine),以及含氮的配基4,4’-bipyridine (bipy)、5,5’-bipyrimidine (bpym),成功的合成出三個系列的金屬錯化物:
(一)[M(L-his)2]H2O
[Zn(L-his)2]H2O (1)
[Ni(L-his)2]H2O (2)
(二){[Cd(bipy)(L-his)(H2O)]guest}n
{[Cd(bipy)(L-his)(H2O)](ClO4)}n (3)
{[Cd(bipy)(L-his)(H2O)](NO3)H2O}n (4)
(三){[Cd(bpym)0.5(L-his)(H2O)]guest}n
{[Cd(bpym)0.5(L-his)(H2O)](NO3)C2H5OH }n (5)
{[Cd(bpym)0.5(L-his)(H2O)](ClO4)H2O}n (6)
在第一系列的化合物中,化合物 1 中鋅金屬離子與兩個L-histidine分子以chelating的方式鍵結,形成tetrahedral的單體結構,單體間藉氫鍵作用力的維繫,堆疊成類似鑽石結構的三維超分子骨架;化合物 2 中鎳金屬離子和兩個L-histidine分子以tridentate的方式鍵結,形成octahedral的單體結構,在此化合物中,單體結構間除了藉由氫鍵作用力的連接外,尚有兩組三明治型的 堆積作用力,使此單體結構展現了高的熱穩定性。本系列主要是探討使用不同的金屬離子,藉由金屬的配位數不同,形成不同的幾何結構,並且發現由於單體與單體間的多組弱作用力,使化合物展現高的熱穩定性。
在第二系列的化合物中,L-histidine以bis-chelating 的方式架橋連接金屬離子形成一維鏈狀,再藉由4,4’-bipyridine互相連接,進而形成二維層狀結構。本系列的化合物對水分子均有可逆的循環吸脫附性質。在化合物4中,更發現了配位水分子的化學吸附及客體水分子的物理吸附可以清楚的被分辨。
在第三系列的化合物5及6中,鎘金屬離子和chelating/tridentate的L-histidine鍵結,形成一維的鏈狀結構,再以5,5’-bipyrimidine 連接一維長鏈,若bpym為cis form,形成二維化合物5;若bpym為trans form,則生成三維化合物6。本反應利用pyrimidine有較多的配位點及其分子結構的可扭轉性,創造結構多樣的配位聚合物。
本論文中,將詳細的介紹實驗合成方法、結構組成,利用熱重分析儀來研究其熱穩定性及水分子的循環吸脫附性質,並且藉由in-situ powder X-ray粉末繞射儀來觀察金屬錯合物在不同溫度下的結構變化。
關鍵字:掌性金屬錯合物、L-組胺酸、自組裝。
The goal of this study was to develop a self-assembly synthetic strategy for the preparation of metal–organic coordination polymers using L-2-amino-3-(1H-imidazol-4-yl)propanic acid (L-histidine), 4,4’-bipyridine (bipy) and 5,5’-bipyrimidine (bpym) in combination with different transition metal ions. The solid state structures of the products were characterized by FT-IR spectroscopy, elemental analysis, thermogravimetric analysis and single-crystal X-ray diffraction methodology.
The reaction of L-histidine with Zn(II) or Ni(II) ions leads to the formation of neutral monomeric compounds, [M(L-his)2]H2O (M = Zn (1), Ni (2)). In 1, the Zn(II) centers are coordinated by two N atoms of two different imidazoles and two N atoms of the NH2 groups of two L-histidine ligands to form a tetrahedral geometry. In 2, the nickel(II) centers are coordinated to two L-histidine ligands in a tridentate fashion through N, NH2 and O to furnish an octahedral geometry.
In another reaction, when Cd(II) ion is allowed to react with 4,4’-bipyridine and L-histidine, in the present of perchlorate (ClO4 ) or nitrate (NO3 ), the coordination polymers {[Cd(bipy)(L-his)(H2O)](ClO4)}n (3), {[Cd(bipy)(L-his)(H2O)](NO3)H2O}n (4), respectively, are formed. The molecular structures of 3 and 4 reveal that the L-histidine acts as a bridging ligand, adopting a bis-chelating coordination mode through the N atom of the NH2 group and four O atoms of carboxylates to form a 1-D chain. The 4,4’-bipyridine ligands are then connected with each chain to afford a 2-D layered structure. In these series, the de-/ad-sorption behavior of coordinated water molecules and guest water molecules are supported by TGA technology. The results show that the process is reversible when the system is exposed to water vapor. In particular, the chemical and physical adsorption behavior of 4 can be clearly differentiated from the TGA patterns.
When Cd(NO3)2 or Cd(ClO4)2 is reacted with 5,5’-bipyrimidine and L-histidine, the coordination polymers {[Cd(bpym)0.5(L-his)(H2O)](NO3)C2H5OH}n (5) and {[Cd(bpym)0.5(L-his)(H2O)](ClO4)H2O}n (6), respectively, are formed. In 5 and 6, the Cd(II) centers are coordinated with L-histidine ligands in a tetradentate coordination mode via the N atom of imidazole, the N atom of an NH2 group and two carboxylate O atoms to form a 1-D chain. In addition, 5,5’-bipyrimidine is connected to each chain of 5 and 6 via cis- and trans form, respectively, to form a 2-D layer and a 3-D structure.
Key word:chiral, L-histidine, metal-organic framework, self-assembly.
1. S. Kitagaw, K. Uemura, Chem. Soc. Rev. 2005, 109, 34.
2. B. Moulton, M. J. Zawarotko, Chem. Soc. Rev. 2001, 101, 1629.
3. L. Carlucci, G. Ciani, D. M. Proserpio, Coord. Chem. Rev. 2003, 246, 247.
4. L. Carlucci, G. Ciani, D. M. Proserpio, CrystEngComm 2003, 5, 269.
5. S. Kitagawa, R. Kitaura, S. I. Noro, Angew. Chem. Int. Ed. 2004,
43, 2334.
6. S. Kitagawa, R. Matsuda, Coord. Chem. Rev. 2007, 251, 2490.
7. P. J. Hagrman, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 1999, 38, 2638.
8. A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, D. M. Schro, Coord. Chem. Rev. 1999, 183, 117.
9. S. Horike, D. Tanaka, K. Nakagawa, S. Kitagawa, Chem. Commun. 2007, 3395.
10. S. Noro, R. Kitaura, M. Kondo, S. Kitagawa, T. Ishii, H. Matsuzaka, M. Yamashita, J. Am. Chem. Soc. 2002, 124, 2568.
11. M. T. Rispens, A. Meetsma, R. Rittberger, J. B. Christoph, N. S. Sariciftci, J. C. Hummelen, Chem. Commun. 2003, 2116.
12. M. Wriedt, A. A. Yakovenko, G. J. Halder, A. V. Prosvirin, K. R. Dunbar, H. C. Zhou, J. Am. Chem. Soc. 2013, 135, 4040.
13. C. Zhao, S. Feng, R. Xu, C. Shi, J. Ni, Chem. Commun. 1997, 945.
14. The first use of the term “coordination polymer” may be traced to J. C. Bailar, Jr., 1964, Preparative Inorganic Reactions, ed. W. L. Jolly, Interscience, New York, 1, 1–25.
15. K. Biradha, M. Sarkar, L. Rajput, Chem. Commun. 2006, 4169.
16. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469.
17. N. Rosi, J. Eckert, M. Eddaoudi, D. Vodak, J. Kim, M. O’Keeffe, O. M. Yaghi, Science 2003, 300, 1127.
18. (a) K. C. Szeto, C. Prestipino, C. Lamberti, A. Zecchina, S. Bordiga, M. Bjørgen, M. Tilset, K. P. Lillerud, J. Mater. Chem. 2007, 19, 211; (b) B. Chen, S. XIANG, G. Qian, Acc. Chem. Res. 2010, 43, 1115; (c) J. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128, 1304.
19. S. Inoue, S. Kawanishi, Biochem. Biophys. Res. Commun. 1989, 159, 445.
20. (a) J. Fan, C. Slebodnick, R. Angel, B. E. Hanson, Inorg. Chem. 2005, 552; (b) N. C. Kasuga, Y. Takagi, S. I. Tsuruta, W. Kuwana, R. Yoshikawa, K. Nomiya, Inorg Chim Acta. 2011, 368, 44; (c) L. Chen, X. Bu, J. Mater. Chem. 2006, 18, 1857; (d) R. H. Kretsivger, F. A. Cotton, Acta Cryst. 1963, 16, 651; (e) H. Yue, D. Zhang, Y. Chen, Z. Shi, S. Feng, Inorg. Chem. Commun. 2006, 9, 959; (f) R. Dreos, L. Mechi, G. Nardin, L. Randaccio, P. Siega, J. Organomet. Chem. 2005, 3815; (g) T. Sakurai, H. Iwasaki, Acta Cryst. 1978, B34, 660; (h) J. He, G. Zhang, D. Xiao, H. Chen, S. Yan, X. Wang, J. Yanga, E. Wang, CrystEngComm 2012, 14, 3609; (i) R. S. Czernuszewicz, Q. Yan, M. R. Bond, C. J. Carrano, Inorg. Chem. 1994, 33, 6116.
21. (a) K. Biradha, M. Sarkar, L. Rajput, Chem. Commun. 2006, 4169; (b) J. Lu, T. Paliwala, S. C. Lim, C. Yu, T. Niu, A. J. Jacobson, Inorg. Chem. 1997, 36, 923; (c) J. Y. Lu, M. A. Lawandy, J. Li, Inorg. Chem. 1999, 38, 2695.
22. (a) T. W. Tseng, T. T. Luo, C. C. Tsai, J. Y. Wu, H. L. Tsai, K. L. Lu, Eur. J. Inorg. Chem. 2010, 3750; (b) T. T. Luo, Y. H. Liu, C. C. Chan, S. M. Huang, B. C. Chang, Y. L. Lu, G. H. Lee, S. M. Peng, J. C. Wang, K. L. Lu, Inorg. Chem. 2007, 46, 10044.
23. (a) M. Zembayashi, K. Tamao, J. Yoshida, M. Kumada, Tetrahedron Lett. 1977, 47, 4098; (b) M. F. Semmelhack, P. Helquist, L. D. Jones, L. Keller, L. Mendelson, L. S. Ryono, J. G. Smith, R. D. Stauffer, J. Am. Chem. Soc. 1981, 103, 6460; (c) I. Colon, D. R. Kelsey, J. Org. Chem. 1986, 51, 2627.
24. 中央研究院週報 第1142 期 羅左財、呂光烈(化學研究所)。
25. A. Y. Robin, K. M. Fromm, Coord. Chem. Rev. 2006, 250, 2127.