研究生: |
姚雅雪 Yao, Ya-Syue |
---|---|
論文名稱: |
銀/鉑奈米島狀薄膜於電漿子增強的光催化產氫應用 Application of Ag/Pt Nanoisland Films in Plasmon-Enhanced Photocatalytic Hydrogen Evolution Reaction |
指導教授: |
陳家俊
Chen, Chia-Chun |
口試委員: |
陳家俊
Chen, Chia-Chun 陳俊維 Chen, Chun-Wei 郭聰榮 Kau, Tsung-Rong 王迪彥 Wang, Di-Yan |
口試日期: | 2021/07/29 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 表面電漿共振 、銀/鉑奈米島狀薄膜 、賈凡尼置換反應 、產氫反應 |
英文關鍵詞: | Surface plasmon resonance, Ag/Pt nanoisland films, Galvanic replacement reaction, Hydrogen evolution reaction |
DOI URL: | http://doi.org/10.6345/NTNU202101137 |
論文種類: | 學術論文 |
相關次數: | 點閱:192 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來全球對於環保課題逐漸重視,積極發展對於環境友善的綠色能源,使得氫能受到廣泛注意。由於產氫反應(Hydrogen evolution reaction, HER)的動力學相當緩慢,需要開發具有良好效率的催化劑,以促進反應發生。貴金屬鉑(Pt)被證實是最佳的產氫催化材料,但其價格高昂並且地球含量稀少限制其發展應用,因此需開發出鉑負載量低且高活性的催化劑。本實驗利用金種誘導生長法,結合金種和多侖試劑(Tollens’ ragent),在ITO導電玻璃上製作銀奈米島狀薄膜(Ag nanoisland film, Ag-NIF)。通過調控Ag前驅物(AgNO3)、Ag+穩定劑(NH4OH)和還原劑(glucose)的濃度與生長時間等參數來調整島與島間隙(Gap)。接著在溴化十六烷基三甲銨 (CTAB)、抗壞血酸 (AA)、60℃環境下,以銀島狀結構做為模板,利用賈凡尼置換反應(Galvanic replacement),將鉑還原至銀表面形成銀/鉑奈米島狀薄膜(Ag/Pt-NIF),利用SEM圖研究奈米結構表面的變化,並利用感應偶合電漿質譜儀(ICP-MS)進行元素定量分析,最後將此材料應用在光催化產氫反應。結果顯示,催化效果最好的樣品Ag/Pt-NIFs (500 μM)置換比例為10:1(Ag: Pt),鉑含量僅有0.01396 mg/cm2;此外,當Ag/Pt-NIFs置換比例為70:1時,Gap distance約為15.2 nm其光催化產氫增強效果最好,僅需0.00264 mg/cm2鉑負載量,在電流密度為-10 mA/cm2時,與沒照光相比,照光後過電位降低約96 mV。由於銀奈米島狀結構具有強烈的表面電漿共振(Longitudinal surface plasmon resonance, LSPR)效應,其吸收光譜可以從可見光到近紅外光的範圍,實驗結果證明我們的銀/鉑奈米島狀薄膜在光催化可提升產氫的表現。
In recent years, global environmental protection has received great attention, which has promoted the development of green energy, including the hydrogen evolution reaction (HER). Since the kinetics of HER is relatively slow, it is necessary to develop a catalyst with good efficiency to promote the reaction. Platinum (Pt) has been demonstrated to be the best catalytic material for HER. However, the high price and scarcity limit its development and application. A good HER catalyst should have low platinum loading and high activity. In this study, the seed-mediated growth method was used to prepare the Ag-NIFs by combining gold seeds and Tollens’ reagent. The gap distances of the Ag-NIFs can be controlled by adjusting the amount of silver precursor (AgNO3), silver stabilizer (NH4OH) and reducing agent (glucose). For the preparation of Ag/Pt-NIFs, the as-prepared Ag-NIFs were used as the templates to carry out the galvanic replacement reaction in a solution containing CTAB and AA at 60℃. SEM images were used to provide the information of surface changes on the nanostructures, and ICP-MS was used for quantitative analysis of elements. Then, the Ag-NIFs and Ag/Pt-NIFs were used for photocatalytic HER. According to the results, photocatalytic HER of the Ag/Pt-NIFs showed the best plasmon-enhancement, when the gap distance was 15.2 nm. In addition, the platinum loading was 0.00264 mg/cm2. Comparing the results of AM 1.5G irradiation and non-irradiation, at the current density of -10 mA/cm2, the applied overpotential decreased about 96 mV. Based on the LSPR of silver nanostructures, the absorption spectrum can range from visible light to near-infrared light. Our results demonstrated that our Ag/Pt-NIFs reveal the capability of plasmon-enhanced photocatalytic HER.
1. U.S. Grains Council. https://grains.org.tw/bp%E7%99%BC%E4%BD%882020%E5%B9%B4%E4%B8%96%E7%95%8C%E8%83%BD%E6%BA%90%E5%B1%95%E6%9C%9B-%E5%8F%AF%E5%86%8D%E7%94%9F%E8%83%BD%E6%BA%90%E5%8D%A0%E6%AF%94%E5%B0%87%E4%B8%8A%E5%8D%87/.
2. Nowotny, J.; Sorrell, C.; Sheppard, L.; Bak, T., Solar-hydrogen: Environmentally safe fuel for the future. International Journal of Hydrogen Energy 2005, 30 (5), 521-544.
3. Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P. H., Insights into renewable hydrogen energy: Recent advances and prospects. Materials Science for Energy Technologies 2020, 3, 319-327.
4. Dubouis, N.; Grimaud, A., The hydrogen evolution reaction: from material to interfacial descriptors. Chem Sci 2019, 10 (40), 9165-9181.
5. Balat, H.; Kırtay, E., Hydrogen from biomass – Present scenario and future prospects. International Journal of Hydrogen Energy 2010, 35 (14), 7416-7426.
6. Scott, K., Chapter 1. Introduction to Electrolysis, Electrolysers and Hydrogen Production. In Electrochemical Methods for Hydrogen Production, 2019; pp 1-27.
7. Ebaid, M. S. Y.; Hammad, M.; Alghamdi, T., THERMO economic analysis OF PV and hydrogen gas turbine hybrid power plant of 100 MW power output. International Journal of Hydrogen Energy 2015, 40 (36), 12120-12143.
8. Khan, M. A.; Zhao, H.; Zou, W.; Chen, Z.; Cao, W.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J., Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochemical Energy Reviews 2018, 1 (4), 483-530.
9. Maeda, K.; Domen, K., New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. The Journal of Physical Chemistry C 2007, 111 (22), 7851-7861.
10. Jeong, S.; Song, J.; Lee, S., Photoelectrochemical Device Designs toward Practical Solar Water Splitting: A Review on the Recent Progress of BiVO4 and BiFeO3 Photoanodes. Applied Sciences 2018, 8 (8).
11. Joy, J.; Mathew, J.; George, S. C., Nanomaterials for photoelectrochemical water splitting – review. International Journal of Hydrogen Energy 2018, 43 (10), 4804-4817.
12. Ram Subbaraman, D. T., Dusan Strmcnik, Kee-Chul Chang,Masanobu Uchimura, Arvydas P. Paulikas, Vojislav Stamenkovic, Nenad M. Markovic, <Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+ -Ni(OH)2-Pt Interfaces.pdf>. 2011.
13. Mai, L. N. T.; Lam, T. C.; Bui, Q. B.; Nhac-Vu, H. T., Efficient hydrogen evolution reaction in alkaline via novel hybrid of Pt deposited zinc phosphide nanosheets. Materials Research Bulletin 2021, 133.
14. Shi, Y.; Zhang, B., Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews 2016, 45 (6), 1529-1541.
15. Wang, X.; Kolen'ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L., One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angew Chem Int Ed Engl 2015, 54 (28), 8188-92.
16. Zhang, J.; Wang, T.; Liu, P.; Liu, S.; Dong, R.; Zhuang, X.; Chen, M.; Feng, X., Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy & Environmental Science 2016, 9 (9), 2789-2793.
17. Zhao, G.; Rui, K.; Dou, S. X.; Sun, W., Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Advanced Functional Materials 2018, 28 (43).
18. Min-Rui Gao, J.-X. L., Ya-Rong Zheng, Yun-Fei Xu, Jun Jiang, Qiang Gao, Jun Li & Shu-Hong Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. 2015.
19. Akira Fujishima, K. H., Electrochemical Photolysis of Water at a Semiconductor Electrode. 1972, 238,37-38.
20. Jing, D.; Guo, L.; Zhao, L.; Zhang, X.; Liu, H.; Li, M.; Shen, S.; Liu, G.; Hu, X.; Zhang, X., Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration. International Journal of Hydrogen Energy 2010, 35 (13), 7087-7097.
21. Do, H. H.; Nguyen, D. L. T.; Nguyen, X. C.; Le, T.-H.; Nguyen, T. P.; Trinh, Q. T.; Ahn, S. H.; Vo, D.-V. N.; Kim, S. Y.; Le, Q. V., Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: A review. Arabian Journal of Chemistry 2020, 13 (2), 3653-3671.
22. Jitputti, J.; Suzuki, Y.; Yoshikawa, S., Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catalysis Communications 2008, 9 (6), 1265-1271.
23. Chava, R. K.; Do, J. Y.; Kang, M., Enhanced photoexcited carrier separation in CdS–SnS2 heteronanostructures: a new 1D–0D visible-light photocatalytic system for the hydrogen evolution reaction. Journal of Materials Chemistry A 2019, 7 (22), 13614-13628.
24. Antuch, M.; Millet, P.; Iwase, A.; Kudo, A.; Grigoriev, S. A.; Voloshin, Y. Z., Characterization of Rh:SrTiO3 photoelectrodes surface-modified with a cobalt clathrochelate and their application to the hydrogen evolution reaction. Electrochimica Acta 2017, 258, 255-265.
25. Fajrina, N.; Tahir, M., A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy 2019, 44 (2), 540-577.
26. Low, J.; Cheng, B.; Yu, J., Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 2017, 392, 658-686.
27. Tahir, M.; Amin, N. S., Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management 2013, 76, 194-214.
28. Kazuma, E.; Kim, Y., Mechanistic Studies of Plasmon Chemistry on Metal Catalysts. Angew Chem Int Ed Engl 2019, 58 (15), 4800-4808.
29. Zhang, Z.; Zhang, C.; Zheng, H.; Xu, H., Plasmon-Driven Catalysis on Molecules and Nanomaterials. Acc Chem Res 2019, 52 (9), 2506-2515.
30. Tian, Y.; Tatsuma, T., Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem Commun (Camb) 2004, (16), 1810-1.
31. Lee, Y. K.; Jung, C. H.; Park, J.; Seo, H.; Somorjai, G. A.; Park, J. Y., Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Lett 2011, 11 (10), 4251-5.
32. Linic, S.; Christopher, P.; Ingram, D. B., Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 2011, 10 (12), 911-21.
33. Shi, Y.; Wang, J.; Wang, C.; Zhai, T.-T.; Bao, W.-J.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y., Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets. Journal of the American Chemical Society 2015, 137 (23), 7365-7370.
34. Lang, Q.; Chen, Y.; Huang, T.; Yang, L.; Zhong, S.; Wu, L.; Chen, J.; Bai, S., Graphene “bridge” in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental 2018, 220, 182-190.
35. Zhang, H. X.; Li, Y.; Li, M. Y.; Zhang, H.; Zhang, J., Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation. Nanoscale 2018, 10 (5), 2236-2241.
36. Wei, J.; Zhou, M.; Long, A.; Xue, Y.; Liao, H.; Wei, C.; Xu, Z. J., Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nanomicro Lett 2018, 10 (4), 75.
37. Sarkar, S.; Peter, S. C., An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorganic Chemistry Frontiers 2018, 5 (9), 2060-2080.
38. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355 (6321).
39. Tabakman, S. M.; Chen, Z.; Casalongue, H. S.; Wang, H.; Dai, H., A new approach to solution-phase gold seeding for SERS substrates. Small 2011, 7 (4), 499-505.
40. Yen, H. C.; Kuo, T. R.; Huang, M. H.; Huang, H. K.; Chen, C. C., Design of Fluorescence-Enhanced Silver Nanoisland Chips for High-Throughput and Rapid Arsenite Assay. ACS Omega 2020, 5 (31), 19771-19777.
41. Tabakman, S. M.; Lau, L.; Robinson, J. T.; Price, J.; Sherlock, S. P.; Wang, H.; Zhang, B.; Chen, Z.; Tangsombatvisit, S.; Jarrell, J. A.; Utz, P. J.; Dai, H., Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat. Commun. 2011, 2, 466.
42. Koh, B.; Li, X.; Zhang, B.; Yuan, B.; Lin, Y.; Antaris, A. L.; Wan, H.; Gong, M.; Yang, J.; Zhang, X.; Liang, Y.; Dai, H., Visible to Near-Infrared Fluorescence Enhanced Cellular Imaging on Plasmonic Gold Chips. Small 2016, 12 (4), 457-465.
43. Li, X.; Kuznetsova, T.; Cauwenberghs, N.; Wheeler, M.; Maecker, H.; Wu, J. C.; Haddad, F.; Dai, H., Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. PNAS 2017, 114 (27), 7089.
44. Zhang, X.; Zhang, H.; Yan, S.; Zeng, Z.; Huang, A.; Liu, A.; Yuan, Y.; Huang, Y., Organic Molecule Detection Based on SERS in Microfluidics. Sci Rep 2019, 9 (1), 17634.
45. Yen, H.-C.; Su, M.-N.; Liu, Y.-C.; Lee, M.-W.; Sheu, Y.-L.; Hsu, L.-Y.; Chen, C.-C., Design of Plasmon Resonance Shifts by the Galvanic Replacement Degree of Au–Ag Nanozappers. The Journal of Physical Chemistry C 2019, 123 (48), 29298-29305.
46. Jingyi Chen, B. W., ‡ Joseph McLellan,† Yujie Xiong,† Zhi-Yuan Li,§ and; Younan Xia*, Optical Properties of Pd−Ag and Pt−Ag Nanoboxes Synthesized via Galvanic Replacement Reactions. 2005.
47. Lin, S. C.; Hsu, C. S.; Chiu, S. Y.; Liao, T. Y.; Chen, H. M., Edgeless Ag-Pt Bimetallic Nanocages: In Situ Monitor Plasmon-Induced Suppression of Hydrogen Peroxide Formation. J Am Chem Soc 2017, 139 (6), 2224-2233.
48. Li, H.; Wu, H.; Zhai, Y.; Xu, X.; Jin, Y., Synthesis of Monodisperse Plasmonic Au Core–Pt Shell Concave Nanocubes with Superior Catalytic and Electrocatalytic Activity. ACS Catalysis 2013, 3 (9), 2045-2051.
49. Xiong, W.; Mazid, R.; Yap, L. W.; Li, X.; Cheng, W., Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. Nanoscale 2014, 6 (23), 14388-93.
50. Hsu, L.-Y.; Yen, H.-C.; Lee, M.-W.; Sheu, Y.-L.; Chen, P.-C.; Dai, H.; Chen, C.-C., Large-Scale Inhomogeneous Fluorescence Plasmonic Silver Chips: Origin and Mechanism. Chem 2020, 6 (12), 3396-3408.