簡易檢索 / 詳目顯示

研究生: 陳翠怡
Chan, Tsui-Yi
論文名稱: Rab18調控出生後小鼠側腦室下區神經幹細胞之自我更新及成年母鼠的氣味辨識
Rab18 Regulates Self-renewal of Postnatal Neural Stem Cells in the Subventricular Zone and Odor Discrimination in Adult Female Mice
指導教授: 王慈蔚
Wang, Tsu-Wei
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 44
中文關鍵詞: Rab18神經幹細胞化學性氣味辨識
英文關鍵詞: Rab18, Neural stem cells, Chemical odor discrimination
DOI URL: http://doi.org/10.6345/NTNU202001345
論文種類: 學術論文
相關次數: 點閱:144下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 成年哺乳動物的腦中,成年神經幹細胞存在於側腦室的腦室下區(subventricular zone, SVZ)。在SVZ中的神經幹細胞會產生神經母細胞,其沿著rostral migratory stream (RMS) 爬行到嗅球,分化成成熟神經元。在嗅球中新生的神經元主要是負責氣味辨識以及母性行為。Rab18是Rab蛋白的一員,屬於Ras相關的小GTP水解酶家族。過去研究中我們發現Rab18對於維持神經幹細胞增殖是必要的,進而得知Rab18對於成年神經元新生的重要性,但並不影響神經幹細胞分化成神經元或星狀膠質細胞。為了確認這點,我們在神經幹細胞中過表達Rab18以觀察其對神經幹細胞增殖的影響,取出生後第7天小鼠SVZ之神經幹細胞培養成初代神經球後,把神經球打散後送入Rab18全長之質體進行觀察,發現過表達Rab18後促進神經幹細胞的分裂。同時取Rab18基因剔除小鼠的神經幹細胞培養成初代神經球,統計神經球的大小及數量,結果顯示剔除Rab18後,其神經球的體積較小,但不影響其數量。由此上述結果得知Rab18對於神經幹細胞的分裂是必要且充分的。另外,神經幹細胞還有一個標誌性的特徵:自我更新的能力。為了測試Rab18對於神經幹細胞自我更新和分裂的影響,我們取得Rab18基因剔除小鼠SVZ之神經幹細胞培養成初代神經球後打散,將其培養成第二代神經球,統計神經球的大小及數量,結果顯示剔除Rab18後第二代神經球的體積較小,數量上亦顯著較少。由此上述結果得知Rab18對於神經幹細胞自我更新的能力是必要的。然而Rab18如何調控神經幹細胞分裂的機制尚未明確,因此我們以Rab18的shRNA來降低Rab18表達,以及將Rab18全長之質體送入P19細胞中,觀察Rab18表現量的改變對於與細胞週期相關之Cyclin D1的影響,證實Rab18對於Cyclin D1的蛋白質表現是充分且必要。為了了解Rab18如何調控神經幹細胞增殖,我們以螢光素酶報告基因檢測了Rab18與三條訊息傳遞路徑:包括Wnt,Notch和Shh訊息傳遞路徑是否有交互作用。發現Rab18會活化Wnt,Notch和Shh路徑。過去在動物模型中發現Rab18基因剔除小鼠的嗅覺有缺陷,不能分辨其幼鼠的氣味,所以我們進一步檢驗該基因剔除小鼠在一般氣味辨識上是否同樣的缺陷。在研究中使用了化學性氣味進行氣味辨識之行為實驗,發現Rab18對於小鼠記住氣味的能力是必要的。綜合以上發現可知Rab18對神經幹細胞増殖必需且充分的,對於神經幹細胞自我更改亦是必要的,並作用於Wnt,Notch和Shh路徑上游,以及與小鼠維持嗅覺記憶的能力相關。

    In the mammalian brain, adult neural stem cells (NSCs) exist in the subventricular zone (SVZ) of the lateral ventricle. In the SVZ, NSCs produce neuroblasts and they migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB) and differentiate into mature neurons. Functions of adult OB neurogenesis are odor discrimination and maternal behaviors. Rab18 is a member of Rab proteins, which belong to Ras-related superfamily of small GTPase. Previously, we find that Rab18 is required for adult neurogenesis by regulating NSC proliferation, but not differentiation. We hypothesize that Rab18 is also sufficient for NSC proliferation. To test it, we overexpressed Rab18 in NSCs derived from postnatal day seven SVZ. We found that overexpression of Rab18 increased cell proliferation. In addition, we cultured NSCs from the SVZ of Rab18-/- mice to form 1’ neurospheres (NSs). In the Rab18-/- group, we found that there was a decrease in the sphere size but no difference of the number of 1’ NSs. These results show that Rab18 is necessary and sufficient for NSC proliferation. NSCs has another feature, self-renewal. We hypothesize that Rab18 is also required for NSC self-renewal and proliferation. To test it, we cultured NSCs from the SVZ of Rab18-/- mice to form 2’ NSs. In the Rab18-/- group, we found that there was a decrease in the sphere size and the number of 2’ NSs. These results show that Rab18 is necessary for NSC self-renewal. To study the mechanism how Rab18 regulates NSCs proliferation, we decreased Rab18 expression with two shRNA constructs against Rab18 or overexpression Rab18 to observe the expression of the cell cycle related protein Cyclin D1. We found that Cyclin D1 protein expression was decreased when Rab18 was knocked down and overexpression Rab18 increased Cyclin D1 protein expression. Our finding suggests that Rab18 is necessary and sufficient for Cyclin D1 protein expression. To find out the downstream signaling pathway of Rab18, we focused on three pathways: Wnt, Notch and Shh signaling pathway. After overexpression of Rab18, we found that the activity of Wnt, Notch and Shh was increased. This result show that Rab18 is the upstream for the Wnt, Notch and Shh pathway. Previously, we find that female Rab18-/- mice have odor discrimination defects that they cannot discriminate odors of their own pups from foreign ones. We further examined whether they had deficits in chemical odor discrimination. We found that Rab18-/- mice had impaired odor memory in chemicals as well. Our finding suggests that Rab18 is required for odor memory. Taken together, our studies suggest that Rab18 regulates NSC proliferation, self-renewal and odor memory in mice, also Rab18 is the upstream for the Wnt, Notch and Shh pathway.

    Contents Introduction 1 Results 12 Discussion 19 Figures 22 References 38

    Ables, J.L., Breunig, J.J., Eisch, A.J., and Rakic, P. (2011). Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12, 269-283.
    Baldin, V., Lukas, J., Marcote, M.J., Pagano, M., and Draetta, G. (1993). Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7, 812-821.
    Behrens, J., von Kries, J.P., Kühl, M., Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W. (1996). Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638-642.
    Belnoue, L., Malvaut, S., Ladevèze, E., Abrous, D.N., and Koehl, M. (2016). Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress. Scientific reports 6, 37615-37615.
    Bem, D., Yoshimura, S., Nunes-Bastos, R., Bond, F.C., Kurian, M.A., Rahman, F., Handley, M.T., Hadzhiev, Y., Masood, I., Straatman-Iwanowska, A.A., et al. (2011). Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet 88, 499-507.
    Blotta, S., Jakubikova, J., Calimeri, T., Roccaro, A.M., Amodio, N., Azab, A.K., Foresta, U., Mitsiades, C.S., Rossi, M., Todoerti, K., et al. (2012). Canonical and noncanonical Hedgehog pathway in the pathogenesis of multiple myeloma. Blood 120, 5002-5013.
    Bonaguidi, M.A., Wheeler, M.A., Shapiro, J.S., Stadel, R.P., Sun, G.J., Ming, G.L., and Song, H. (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145, 1142-1155.
    Brighouse, A., Dacks, J.B., and Field, M.C. (2010). Rab protein evolution and the history of the eukaryotic endomembrane system. Cell Mol Life Sci 67, 3449-3465.
    Cameron, H.A., and Glover, L.R. (2015). Adult neurogenesis: beyond learning and memory. Annu Rev Psychol 66, 53-81.
    Cheng, C.-Y., Wu, J.-C., Tsai, J.-W., Nian, F.-S., Wu, P.-C., Kao, L.-S., Fann, M.-J., Tsai, S.-J., Liou, Y.-J., Tai, C.-Y., et al. (2015). ENU mutagenesis identifies mice modeling Warburg Micro Syndrome with sensory axon degeneration caused by a deletion in Rab18. Experimental Neurology 267, 143-151.
    Choudhry, Z., Rikani, A.A., Choudhry, A.M., Tariq, S., Zakaria, F., Asghar, M.W., Sarfraz, M.K., Haider, K., Shafiq, A.A., and Mobassarah, N.J. (2014). Sonic hedgehog signalling pathway: a complex network. Ann Neurosci 21, 28-31.
    Cohen, B., Shimizu, M., Izrailit, J., Ng, N., Buchman, Y., Pan, J., Dering, J., and Reedijk, M. (2009). Cyclin D1 Is a Direct Target of JAG-Mediated Notch Signaling in Breast Cancer. Breast cancer research and treatment 123, 113-124.
    Dejgaard, S.Y., Murshid, A., Erman, A., Kızılay, Ö., Verbich, D., Lodge, R., Dejgaard, K., Ly-Hartig, T.B.N., Pepperkok, R., Simpson, J.C., et al. (2008). Rab18 and Rab43 have key roles in ER-Golgi trafficking. Journal of Cell Science 121, 2768-2781.
    Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703-716.
    Doty, R.L., Beals, E., Osman, A., Dubroff, J., Chung, I., Leon-Sarmiento, F.E., Hurtig, H., and Ying, G.-S. (2014). Suprathreshold odor intensity perception in early-stage Parkinson's disease. Mov Disord 29, 1208-1212.
    Feierstein, C.E. (2012). Linking adult olfactory neurogenesis to social behavior. Front Neurosci 6, 173.
    Feldmann, A., Bekbulat, F., Huesmann, H., Ulbrich, S., Tatzelt, J., Behl, C., and Kern, A. (2017). The RAB GTPase RAB18 modulates macroautophagy and proteostasis. Biochem Biophys Res Commun 486, 738-743.
    Gage, F.H., Ray, J., and Fisher, L.J. (1995). Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18, 159-192.
    Gopal Krishnan, P.D., Golden, E., Woodward, E.A., Pavlos, N.J., and Blancafort, P. (2020). Rab GTPases: Emerging Oncogenes and Tumor Suppressive Regulators for the Editing of Survival Pathways in Cancer. Cancers (Basel) 12, 259.
    Gronemeyer, T., Wiese, S., Grinhagens, S., Schollenberger, L., Satyagraha, A., Huber, L.A., Meyer, H.E., Warscheid, B., and Just, W.W. (2013). Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study. FEBS Lett 587, 328-338.
    Hollands, C., Bartolotti, N., and Lazarov, O. (2016). Alzheimer's Disease and Hippocampal Adult Neurogenesis; Exploring Shared Mechanisms. Front Neurosci 10, 178.
    Ishida, M., M, E.O., and Fukuda, M. (2016). Multiple Types of Guanine Nucleotide Exchange Factors (GEFs) for Rab Small GTPases. Cell Struct Funct 41, 61-79.
    Jain, N., and Ganesh, S. (2016). Emerging nexus between RAB GTPases, autophagy and neurodegeneration. Autophagy 12, 900-904.
    Kageyama, R., Imayoshi, I., and Sakamoto, M. (2012). The role of neurogenesis in olfaction-dependent behaviors. Behav Brain Res 227, 459-463.
    Koch, U., Lehal, R., and Radtke, F. (2013). Stem cells living with a Notch. Development 140, 689.
    Kopan, R., and Ilagan, M.X.G. (2009). The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 137, 216-233.
    Kovall, R.A. (2007). Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Current Opinion in Structural Biology 17, 117-127.
    Kovall, R.A., Gebelein, B., Sprinzak, D., and Kopan, R. (2017). The Canonical Notch Signaling Pathway: Structural and Biochemical Insights into Shape, Sugar, and Force. Dev Cell 41, 228-241.
    Kumar, D.U., and Devaraj, H. (2012). Expression of Wnt 3a, beta-catenin, cyclin D1 and PCNA in mouse dentate gyrus subgranular zone (SGZ): a possible role of Wnt pathway in SGZ neural stem cell proliferation. Folia Biol (Praha) 58, 115-120.
    Leuner, B., and Sabihi, S. (2016). The birth of new neurons in the maternal brain: Hormonal regulation and functional implications. Front Neuroendocrinol 41, 99-113.
    Lissemore, J.L., and Starmer, W.T. (1999). Phylogenetic Analysis of Vertebrate and Invertebrate Delta/Serrate/LAG-2 (DSL) Proteins. Molecular Phylogenetics and Evolution 11, 308-319.
    Lledo, P.M., and Valley, M. (2016). Adult Olfactory Bulb Neurogenesis. Cold Spring Harb Perspect Biol 8.
    Lobjois, V., Benazeraf, B., Bertrand, N., Medevielle, F., and Pituello, F. (2004). Specific regulation of cyclins D1 and D2 by FGF and Shh signaling coordinates cell cycle progression, patterning, and differentiation during early steps of spinal cord development. Dev Biol 273, 195-209.
    Ma, J., Yu, Z., Qu, W., Tang, Y., Zhan, Y., Ding, C., Wang, W., and Xie, M. (2010). Proliferation and Differentiation of Neural Stem Cells Are Selectively Regulated by Knockout of Cyclin D1. Journal of Molecular Neuroscience 42, 35-43.
    McBurney, M.W., Jones-Villeneuve, E.M., Edwards, M.K., and Anderson, P.J. (1982). Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299, 165-167.
    Ming, G.L., and Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687-702.
    Muller, M.P., and Goody, R.S. (2018). Molecular control of Rab activity by GEFs, GAPs and GDI. Small GTPases 9, 5-21.
    Pelullo, M., Zema, S., Nardozza, F., Checquolo, S., Screpanti, I., and Bellavia, D. (2019). Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front Genet 10, 711-711.
    Robbins, D.J., Fei, D.L., and Riobo, N.A. (2012). The Hedgehog signal transduction network. Sci Signal 5, re6-re6.
    Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D’Amico, M., Pestell, R., and Ben-Ze’ev, A. (1999). The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences 96, 5522.
    Valley, M., Mullen, T., Schultz, L., Sagdullaev, B., and Firestein, S. (2009). Ablation of mouse adult neurogenesis alters olfactory bulb structure and olfactory fear conditioning. Frontiers in Neuroscience 3.
    Vazquez-Martinez, R., Cruz-Garcia, D., Duran-Prado, M., Peinado, J.R., Castano, J.P., and Malagon, M.M. (2007). Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules. Traffic 8, 867-882.
    Weiss, S., Reynolds, B.A., Vescovi, A.L., Morshead, C., Craig, C.G., and van der Kooy, D. (1996). Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19, 387-393.
    Wu, B., Qi, R., Liu, X., Qian, L., and Wu, Z. (2018). Rab18 overexpression promotes proliferation and chemoresistance through regulation of mitochondrial function in human gastric cancer. Onco Targets Ther 11, 7805-7820.
    Zhao, C., Deng, W., and Gage, F.H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132, 645-660.
    Yang, Tsu-Wei Wang. (2019). YAP and Rab18 regulate properties of adult neural stem cells in the mammalian subventricular zone. Thesis.
    Hung, Tsu-Wei Wang. (2018). Rab18 Regulates Adult Neurogenesis, Maternal Behaviors and Anti-anxiety in Postpartum Mice through Prolactin. thesis.
    Huang, Tsu-Wei Wang. (2018). Rab18 Negatively Regulates Dopamine to Induce Adult Neurogenesis and Maternal Behaviors in Postpartum Mice. thesis.
    Chou, Tsu-Wei Wang. (2015). The Role of Rab18 in Adult Neurogenesis of Lactating Female Mice. Thesis.

    下載圖示
    QR CODE