簡易檢索 / 詳目顯示

研究生: 趙韋善
Wei-Shan Chao
論文名稱: 具雙極性順式二苯乙烯/芴螺旋體雙重鄰位混成系統之衍生物在有機電致發光和有機敏化太陽能電池材料上的應用之研究
Spirally Configured cis-Stilbene/Fluorene Hybrids as Bipolar, Fluorescent Materials and Organic Sensitizers for Optoelectroic and Solar Cell Applications
指導教授: 陳建添
Chen, Chien-Tien
李位仁
Lee, Way-Zen
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 247
中文關鍵詞: 順式二苯乙烯芴螺旋體染料敏化太陽能電池有機電致發光二極體雙極性有機光電材料
英文關鍵詞: spirally configured, cis-stilbene, fluorene, organic light-emitting device
論文種類: 學術論文
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一、具有雙極性順式二苯乙烯/芴螺旋體雙重鄰位混成系統材料於有機敏化太陽能電池應用
    成功的以順式二苯乙烯/芴螺旋體系統為模板,C7位置統一為噻吩和羫酸基團,C3位置則為不同的推電子基團合成出一系列N-STIF-TCAs的有機敏化材料;在敏化太陽能電池元件的元件效率上,這一系列化合物的在AM 1.5標準太陽光照射下元件效率最大可以達到6.1% (Voc = 697 mV, Jsc = 12.2 mA/cm2, FF = 0.72);而光電轉化率在吸收光波長範圍450-550 nm,可以達到75%以上的轉換效率。另一方面,我們利用有機金屬敏化材料鋅-卟啉 (LD12) 和有機敏化材料IMS-STIF-TCA搭配而得到一個高效率的共吸附染料敏化太陽能電池,IMS-STIF-TCA除了可以彌補和提升LD12在吸收光波長範圍450-500 nm的光電轉換率之外,這兩化合物搭配的共吸附敏化太陽能電池的元件效率可以提升到9.0%,為單純的LD12 (7.5%) 所製成的元件效率的1.2倍;IMS-STIF-TCA (5.7%) 所製成的元件效率的1.6倍;我們也利用NFl2-STIF-TCA、YD2-oC8和YDD6為主的共敏化太陽能電池,成功地讓吸收光範圍延伸到800 nm的範圍之外,因為NFl2-STIF-TCA本身具有雙螺旋體的結構,可以防止YDD6和YD2-oC8在奈米晶二氧化鈦上產生分子堆疊,使得整體的元件效率也提升到10.4 %左右。

    二、具有雙極性順式二苯乙烯/芴螺旋體雙重鄰位混成系統材料於有機發光二極體上的應用
    以順式二苯乙烯/芴螺旋體系統為模板,C3位置固定為雙苯基胺基團,C7位置則引入氰基、苯氰基、咪唑基和苯咪唑基團,成功的合成出一系列具有藍綠光和純綠光的雙極性有機光電材料N-STIF-As。當搭配α-NPB為電洞傳輸材料或者是以Alq3或TPBI為電子傳輸材料所製成雙層或者是三層結構元件時,這一系化合物在電流密度為20 mA/cm2的量測下,外部量子產率 (ext) 為4.0-5.2%;螢光亮度 (L20) 為2180-3069 cd/m2;元件效率為 (c) 11.4-15.8 cd/A;而功率效率為 (p) 5.4-7.0 lm/W,和以Alq3為主所製成雙層或三層結構的元件效率相比,皆高於2-3倍。另外,我們以N-STIF-CN和N-STIF-PhCN這兩個化合物當作電子傳輸材料並應用在有機電致發光二極體的元件上,其元件效率皆優於以Alq3為電子傳輸材料所製成的元件,效率皆高於1.4-1.8倍。

    三、7,8號位置茚基片段混成於順式二苯乙烯/芴螺旋體雙重混成系統在有機發光二極體上的應用
    以順式二苯乙烯/芴螺旋體系為主要的核心模板,並在C7和C8位置混成茚基片段,並在C3的位置固定為雙苯基胺基團,而成功的合成出一系列新型模板的有機光電材料並應用在有機電致發光二極體上。我們在這一系列化合物的茚基片段上引入不同的推拉電子基團,使其成為一系列的天藍光和純綠光的有機光電材料。當搭配α-NPB為電洞傳輸材料或者是以Alq3或TPBI為電子傳輸材料所製成雙層或者是三層結構元件時,這一系化合物在電流密度為100 mA/cm2的量測下,外部量子產率 (ext) 為1.1-3.0%;螢光亮度 (L20) 為1628-5151 cd/m2;元件效率為 (c) 1.8-5.8 cd/A;而功率效率則為 (p) 0.8-2.0 lm/W。

    四、新型3,4,7,8-茚基或吡咯並環混成於順式二苯乙烯/芴螺旋體雙重鄰位混成系統在有機發光二極體上的應用
    另外也以順式二苯乙烯/芴螺旋體系統為主要模板,利用東京大學化學系中村榮一教授及其研究團隊所開發的新合成方法引入茚基或者是吡咯並環,而成功合成出兩個新型的有機光電材料。在元件製程上,當搭配PEDOT:PSS為電洞注入材料和以TPBI為電子傳輸材料,以真空蒸鍍方法所製成的元件效率,以DICBID-STIF為主的元件效率在電流密度20 mA/cm2的量測下,外部量子產率 (ext) 為0.7%;螢光亮度 (L20) 為294 cd/m2;元件效率為 (c) 1.9 cd/A;而功率效率為 (p) 1.1 lm/W;以DIID-STIF為主的元件效率同樣在電流密度20 mA/cm2的量測下,外部量子產率 (ext) 為0.8%;螢光亮度 (L20) 為832 cd/m2;元件效率為 (c) 2.2 cd/A;而功率效率為 (p) 1.3 lm/W。除此之外,為了增進這兩者化合物所製成的元件效率,我們以CBP當作主體材料,DICBID-STIF和DIID-STIF以合適的比例參雜進去,當搭配PEDOT:PSS為電洞注入材料和以TPBI為電子傳輸材料,以濕式旋轉塗佈方法所製成的元件效率,以DICBID-STIF為主的元件效率在電流密度20 mA/cm2的量測下,外部量子產率 (ext) 為2.3%;螢光亮度 (L20) 為550 cd/m2;元件效率為 (c) 2.8 cd/A;而功率效率為 (p) 1.4 lm/W;以DIID-STIF為主的元件效率同樣在電流密度20 mA/cm2的量測下,外部量子產率 (ext) 為2.9%;螢光亮度 (L20) 為1250 cd/m2;元件效率為 (c) 6.5 cd/A;而功率效率則為 (p) 3.5 lm/W。

    1. Spirally Configured cis-Stilbene/Fluorene Hybrids as Bipolar, Organic Sensitizers for Solar Cell Applications
    Hybrids based on a dibenzosuberene core bearing a spiro-fluorene junction at the C-5 position and with amino donor and -thiophenyl--cyanoacrylic acid acceptor groups at C-3 and C-7, respectively, serve as new organic sensitizer materials for solar cell applications. Solar cell devices based on these materials show a conversion efficiency () of up to 6.1% (Voc = 697 mV, Jsc = 12.2 mA/cm2, FF = 0.72) at AM 1.5G conditions. The best IPCE values exceed 75% within 450-550 nm absorption range. And we also designed a stepwise approach for co-sensitization of a zinc porphyrin sensitizer (LD12) with a IMS-STIF-TCA for dye-sensitized solar cells. The co-sensitized LD12+IMS-STIF-TCA device showed significantly enhanced VOC and JSC with respect to its individual single-dye sensitized devices. Upon optimization, the device made of the LD12+IMS-STIF-TCA system yielded JSC = 16.7 mA/cm2, VOC = 0.74 V, FF = 0.73 and  = 9.0 %; this performance is significantly greater than those of the individual devices made from LD12 ( = 7.5 %) and IMS-STIF-TCA ( = 5.7 %) under the same conditions of fabrication.

    2. Spirally Configured cis-Stilbene/Fluorene Hybrids as Ambipolar, Fluorescent Materials for OLED Applications
    A new class of cis-stilbene/fluorene spiro hybrid systems with paired C3-diphenylamino donor and C7-cyano, C7-phenylcyano, C7-N-phenylbenzimidazole, or C7-N-benzimidazole acceptor units was synthesized as organic materials for OLED applications. When coupled with hole transporting (HT) α-NPB and/or electron transporting (ET) Alq3 or TPBI layers, they serve as one of the best bluish green and pure green emitting layers with excellent ext of 4.0-5.2%, L20 of 2180-3069 cd/m2, c of 11.4-15.8 (cd/A), and p of 5.4-7.0 (lm/W) at 20 mA/cm2, which are about 2-3 times better than those based on standard bilayer or trilayer device combinations. The cyano-containing materials can further supplant Alq3 as superior ET materials with improved working efficiencies by 1.4-1.8 times in two model devices.

    3. 7,8-Dihydro-Indene Fused, Spirally Configured cis-Stilbene/Fluorene Hybrid Systems, Fluorescent Materials for Optoelectroic Applications
    Advanced systems derived from a series of 7,8-indene-fused, cis-stilbene/fluorene hybrid systems were also synthesized and are being tested as new classes of organic fluorescent materials for optoelectronic applications. Diphenylamine unit was used as the donor group at the C3 position of the fused templates in all cases. These types of materials led to significant increase of absorption in deep blue visible region and showed strong sky blue or green emission. When coupled with hole transporting (HT) α-NPB and/or electron transporting (ET) Alq3 or TPBI layers, they serve as one of the best bluish green and pure green emitting layers with excellent ext of 1.1-3.0%, L100 of 1628-5151 cd/m2, c of 1.8-5.8 (cd/A), and p of 0.8-2.0 (lm/W) at 100 mA/cm2.
    4. 2,3,7,8-Diindenoindacene and Pyrrole[3,2-e]indancene fused, Spirally Configured cis-Stilbene/Fluorene Hydrid Fluorescent Materials for Optolectronic Applications
    Another new systems derived form a series of 2,3,7,8-diindenoindacene- or -pyrrole[3,2-e]indancene-fused, cis-stilbene/fluorene hybrid systems were synthesized and are being tested as new classes of organic fluorescent materials for optoelectronic applications. Using new synthesis methodology for cycloaddition by Prof. Nakamura Lab to design the new fused templates in the two cases. These two materials also led to increase of absorption in deep blue visible region and showed strong sky blue emission. When coupled with hole injecting (HI) PEDOT:PSS and electron transporting (ET) TPBI layers, A bluish green emitting layer for DICBID-STIF-based device by evaporate process with excellent ext of 0.7%, L20 of 294 cd/m2, c of 1.9 (cd/A), and p of 1.1 (lm/W) at 20 mA/cm2; Another bluish green emitting layer for DIID-STIF-based device by evaporate process with excellent ext of 0.8%, L20 of 832 cd/m2, c of 2.2 (cd/A), and p of 1.3 (lm/W) at 20 mA/cm2. When CBP as host and DICBID-STIF or DIID-STIF as guest, are coupled with hole injecting (HI) PEDOT:PSS and electron transporting (ET) TPBI layers, A blue emitting layer for DICBID-STIF-based device by solution process with excellent ext of 2.3%, L20 of 550 cd/m2, c of 2.8 (cd/A), and p of 1.4 (lm/W) at 20 mA/cm2; Another bluish green emitting layer for DIID-STIF-based device by solution process with excellent ext of 2.9%, L20 of 1250 cd/m2, c of 6.5 (cd/A), and p of 3.5 (lm/W) at 20 mA/cm2.

    目錄 目錄 中文摘要 英文摘要 第一章、 具有雙極性順式二苯乙烯/芴螺旋體雙重鄰位混成系統材料於有機敏化太陽能電池應用 1-1、前言………………………………………………………………1 1-1-1、 具有雙極型的有機染料敏化材料......................10 1-2、研究動機............................................21 1-3、分子合成步驟……………………………………………………25 1-4、光物理和電化學性質的探討……………………………………25 1-5、敏化太陽能電池元件討論………………………………………32 1-6、N-STIF-TCAs材料在共吸附染料敏化太陽能電池元件的應用………………………………………………………………………36 1-7、結論………………………………………………………………48 第二章、 具有雙極性順式二苯乙烯/芴螺旋體雙重鄰位混成系統材料於有機發光二極體上的應用 2-1、前言………………………………………………………………51 2-1-1、具有雙極性有機小分子材料…………………………………54 2-1-2、研究動機………………………………………………………59 2-1-3、分子設計………………………………………………………60 2-2、分子的合成步驟…………………………………………………62 2-3、熱、光物理、及電化學性質的探討……………………………64 2-4、有機發光二極體元件性質的討論………………………………73 2-5、N-STIF-CN和N-STIF-PhCN當作電子傳輸材料在有機發光二極體元件上的應用……………………………………………………89 2-6、結論………………………………………………………………96 第三章、7,8號位置茚基片段混成於順式二苯乙烯/芴螺旋體雙重混成系統在有機發光二極體上的應用 3-1、前言………………………………………………………………99 3-1-1、研究動機………………………………………………………105 3-2、分子的合成步驟…………………………………………………107 3-3、熱、光物理、及電化學性質的探討……………………………111 3-4、有機發光二極體元件性質的討論………………………………121 3-5、結論………………………………………………………………136 第四章、新型3,4,7,8-茚基或吡咯並環混成於順式二苯乙烯/芴螺旋體雙重鄰位混成系統在有機發光二極體上的應用 4-1、前言………………………………………………………………138 4-2、研究動機和分子設計…………………………………………147 4-3、實驗合成步驟…………………………………………………149 4-4、熱、光物理、及電化學性質的探討…………………………154 4-5、有機光電元件性質的探討……………………………………164 4-6、結論……………………………………………………………170 第五章、總結和未來展望 5-1、總結……………………………………………………………172 5-2、未來展望………………………………………………………173 第六章、分析儀器設備、實驗步驟與光譜數據 6-1、分析儀器………………………………………………………178 6-2、光電元件製備及量測…………………………………………182 6-2-1:染料敏化太陽能電池元件製備及量測……………………182 6-2-2:有機發光二極體元件製備及量測…………………………182 6-3、實驗步驟及數據分析…………………………………………183 參考文獻……………………………………………………………234 附圖目錄

    參考文獻:
    (1) (a) Armaroli, N.; Balzani, V. Angew. Chem. Int. Ed. 2007, 46, 52. (b) Service, R. F. Science 2005, 309, 548
    (2) Nazeeruddin, M. K.; Kay, A.; Rodicio, L.; Humphry, B. R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
    (3) (a) Grätzel, M. J. Photochem. Photobiol. A 2004, 164, 3. (b) O’Reagen, B.; Grätzel, M. Nature 1991, 353, 737. (c) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry, B. R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
    (4) (a) Nazeeruddin, M. K.; DeAngelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. (b) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya. R.; Koide, N.; Han, L. Jpn. J. Appl. Phys., Part 2 2006, 45, L638. (c) Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Humphrey-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. Chem. Commum. 2008, 2629.
    (5) (a) For a review, see: Giribabu, L.; Kanaparthi, R. K.; Velkannan, V. Chem. Record 2012, 12(3), 306-328. (b)染料敏化太陽能電池光電轉換圖: http://www.postech.ac.kr/chem/mras/eunju.jpg
    (6) (a) Yella, A.; Lee, H.-W.; Taso, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Eric Diau, W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Science, 2011, 334, 629-634. (b) Imahori, H.; Umeyama, T.; and Ito, S. Acc. Chem. Res. 2009, 42, 1809. (c) Martínez-Díaz, M. V.; de la Torrea, G. and Torres, T. Chem. Commun., 2010, 46, 7090. (d) Walter, M. G.; Rudine, A. B. and Wamser, C. C. J. Porphyrins & Phthalocyanines 2010, 14, 759
    (7) (a) Kim, Y. II; Gregg, B. A. J. Phys. Chem. 1994, 98, 2412. (b) Gregg, B. A. J. Phys. Chem. B, 2003, 107, 13540. (c) Gregg, B. A. J. Phys. Chem. B, 2003, 107, 4688. (d) Ferrere, S.; Gregg, B. A. J. Phys. Chem. B, 2001, 105, 7602. (e) Ferrere, S.; Zaban, A.; Gregg, B. A. J. Phys. Chem. B, 1997, 101, 4493.
    (8) (a) Zafer, C.; Kus, M.; Turkmen, G.; Dincalp, H.; Demic, S.; Kuban, B.; Teoman, Y.; Icli, S. Sol. Energy Mater. Sol. Cells 2007, 91, 427. (b) Planells, M.; Céspedes-Guirao, F. J.; Forneli, A.; Sastre-Santos, A.; Fernández-Lázaro, F.; Palomares, E. J. Mater. Chem. 2008, 18, 5802. (c) Erten-Ela, S.; Yilmaz, D.; Icli, B.; Dede, Y.; Icli, S.; Akkaya, E. U. Org. Lett. 2008, 10, 3299.
    (9) (a) Eu, S.; Hayashi, S.; Umeyama, T.; Matano, Y.; Araki, Y.; Imahori, H. J. Phys. Chem. C, 2008, 112, 4396. (b) Shibano, Y.; Umeyama, T.; Matano, Y.; Imahori, H. Org. Lett. 2007, 9, 1971. (c) Li, C.; Yum, J.-H.; Moon, S.-J.; Herrmann, A.; Eickemeyer, F.; Pschirer, N. G.; Erk, P.; Schcneboom, J.; Müllen, K.; Grätzel, M.; Nazeeruddin, M. K. ChemSusChem 2008, 1, 615. (d) Otsuki, J.; Takaguchi, Y.; Takahashi, D.; Kalimuthu, P.; Singh, S. P.; Islam, A.; Han, L. Adv. OptoElectronics 2011, ID. 860486.
    (10) (a) Miyashita, M.; Sunahara, K.; Nishikawa, T.; Uemura, Y.; Koumura, N.; Hara, K.; Mori, A.; Abe, T.; Suzuki, E.; Mori, S. J. Am. Chem. Soc. 2008, 130, 17874. (b) Hara, K.; Miyamoto, K.; Abe, Y.; Yanagida, M. J. Phys. Chem. B, 2005, 109, 23776. (c) Wang, Z. S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C, 2007, 111, 7224. (d) Katoh, R.; Huijser, A.; Hara, K.; Savenije, T. J.; Siebbeles, L. D. A. J. Phys. Chem. C, 2007, 111, 10741.
    (11) (a) Wang, Z. S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C, 2008, 112, 17011. (b) Sayama, K.; Tsukagoshi, S.; Hara, K.; Ohga, Y. J. Phys. Chem. B, 2002, 106, 1363. (c) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama. K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B, 2003, 107, 597. (d) Wang, Z. S.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Arakawa, H.; Sugihara, H. J. Phys. Chem. B, 2005, 109, 3907.
    (12) (a) Horiuchi, T.; Miura, H.; Uchida, S. Chem. Commun. 2003, 3036. (b) Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218. (b) Kuang, D.; Uchida, S.; Humphry-Baker, R.; Zakeeruddin, S. M.; Graetzel, M. Angew. Chem. Inter. Ed.2008, 47, 1923. (c) Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy, P.; Gratzel, M. Chem. Commun. 2008, 41, 519.
    (13) (a) Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J. H.; Fantacci, A.; Angelis, F. D.; Di Censo, D.; Nazeeruddin, Md. K.; Gräzel, M. J. Am. Chem. Soc. 2006, 128, 16701. (b) Kuang, D.; Walter, P.; Nesch, F. Kim, S.; Ko, J.; Comte, P.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Langmuir, 2007, 23, 10906.
    (14) (a) Cai, N.; Zhang, J.; Zhou, D.; Yi, Z.; Guo, J.; Wang, P. J. Phys. Chem. C, 2009, 113, 4215. (b) Xu, M.; Li, R.; Pootrakulchote, N.; Shi, D.; Guo, J.; Yi, Z.; Zakeeruddin, S. M.; Grätzel, M.; Wang, P. J. Phys. Chem. C, 2008, 112, 19770. (c) Shi, D.; Cao, Y.; Pootrakulchote, N.; Yi, Z.; Xu, M.; Zakeeruddin, S. M.; Grätzel, M.; Wang, P. J. Phys. Chem. C, 2008, 112, 17478. (d) Xu, M.; Wenger, S.; Bala, H.; Shi, D.; Li, R.; Zhou, Y.; Zakeeruddin, S. M.; Grätzel, M.; Wang, P. J. Phys. Chem. C, 2009, 113, 2966.
    (15) Qin, H.; Wenger, S.; Xu, M.; Gao, F.; Jing, X.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2008, 130, 9202.
    (16) Liu, W.-H.; Wu, I.-C.; Lai, C.-H.; Lai, C.-H.; Chou, P.-T.; Li, Y.-T.; Chen, C.-L.; Hsu, Y.-Y.; Chi, Y. Chem. Commun. 2008, 5152.
    (17) Chen, K.-F.; Hsu, Y.-C.; Wu, Q.; Yeh, M.-C. P.; Sun, S.-S. Org. Lett. 2009, 11, 377.
    (18) Hwang, S.; Lee, J. H.; Park, C.; Lee, H.; Kim, C.; Park, C. Lee, M. H.; Lee, W.; Park, J.; Kim, K.; Park, N. G.; Kim, C. Chem. Commun. 2007, 4887.
    (19) (a) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M. Adv. Funct. Mater. 2005, 15(2), 246. (b) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 2245. (c) Hagberg, D. P.; Marinado, T.; Karlesson, M.; Nonomura, K.; Oin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72(25), 9550. (d) For (N-fluorenyl)carbazole donor and 1,2-dithiophenyl-ethenyl cores, see: Kim, D.; Lee, J. K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63(9), 1913. (e) For bis-(N-fluorenyl)carbazole donor and p-phenylene vinylene core, see: Kim, C.; Choi, H.; Kim, S.; Baik, C.; Song, K.; Kang, M. S.; Kang, S. O.; Ko, J. J. Org. Chem. 2008, 73, 7072.
    (20) Hagberg, D. P.; Yum, J. H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Grätzel, M.; Nazeeruddin, Md. K. J. Am. Chem. Soc. 2008, 130, 6259.
    (21) Lin, J. T.; Chen, P. C.; Yen, Y. S.; Hsu, Y. C.; Chou, H. H.; Yeh, M. C. P. Org. Lett. 2009, 11, 97.
    (22) (a) Li, J.-Y.; Chen, C.-Y.; Lee, C.-P.; Chen, S.-C.; Lin, T.-H.; Tsai, H.-H.; Ho, K.-C.; Wu, C.-G. Org. Lett. 2010, 12, 5454. (b) Li, J.-Y.; Chen, C.-Y.; Ho, W.-C.; Chen, S.-H.; Wu, C.-G. Org. Lett. 2012, 14, 5420.
    (23) (a) Qu, S.; Oin, C.; Islam, A.; Wu, Y.; Zhu, W.; Hua, J.; Tian, H. and Han, L. Chem. Commun. 2012, 48, 6972. (b) Wu, Y.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian, H.; Grätzel, M. and Zhu, W. Energy Environ. Sci. 2012, 5, 8261. (c) Li, W.; Wu, Y.; Zhang, Q.; Tian, H. and Zhu, W. Appl. Mater. Interfaces 2012, 4, 1822. (d) Ying, W.; Guo, F.; Li, J.; Zhang, Q.; Wu, W.; Tian, H. and Hua, J. Appl. Mater. Interfaces 2012, 4, 4215.
    (24) (a) Cheng, Y.-J.; Yang, S.-H. and Hsu. C.-S. Chem. Rev. 2009, 109, 5868. (b) Chen, Y.-L.; Chang, C.-Y.; Cheng, Y.-J.; Hsu, C.-S. Chem. Mater. 2012, 24, 3964. (c) Cheng, Y.-J.; Wu, J.-S.; Shih, P.-I.; Chang, C.-Y.; Jwo, P.-C.; Kao, W.-S. and Hsu, C.-S. Chem. Mater. 2011, 23, 2361. (d) Wu, J.-S.; Cheng, Y.-J.; Dubosc, M.; Hsieh, C.-H.; Chang, C.-Y. and Hsu, C.-S. Chem. Commun. 2010, 46, 3259. (e) Cheng, Y.-J.; Cheng, S.-W.; Chang, C.-Y.; Kao, W.-S.; Liao, M.-H. and Hsu, S.-C. Chem. Commun. 2012, 48, 3203.
    (25) (a) Ting, H.-C.; Tsai, C.-H.; Chen, J.-H.; Lin, L.-Y.; Chou, S.-H.; Wong, K.-T.; Huang, T.-W. and Wu, C.-C. Org. Lett. 2012, 14, 6338. (b) Chen, J.-H.; Tsai, C.-H.; Wang, S.-A.; Lin, Y.-Y.; Huang, T.-W.; Chiu, S.-F.; Wu, C.-C. and Wong, K.-T. J. Org. Chem. 2011, 76, 8977. (c) Lin, L.-Y.; Tsai, C.-H.; Wong, K.-T.; Huang, T.-W.; Hsieh, L.; Liu, S.-H.; Lin, H.-W.; Wu, C.-C.; Chou, S.-H.; Chen, S.-H. and Tsai, A.-I. J. Org. Chem. 2010, 75, 4778.
    (26) Shen, P.; Tang, Y.; Jiang, S.; Chen, H.; Zheng, X.; Wang, X.; Zhao, B.; Tan, S. Org. Electronics 2011, 12, 125.
    (27) Qin, C.; Islam, A.; Han, L. J. Mater. Chem. 2012, 22, 19236.
    (28) (a) Karlsson, K. M.; Jiang, X.; Eriksson, S. K.; Gabrielsson, E.; Rensmo, H.; Hagfeldt, A. Sun, L. Chem. Eur. J. 2011, 17, 6415. (b) Tian, H.; Bora, I.; Jiang, X.; Gabrielsson, E.; Karlsson, K. M.; Hagfeldt, A.; Sun, L. J. Mater. Chem. 2011, 21, 12462.
    (29) (a) Bai, Y.; Zhang, J.; Zhou, D.; Wang, Y.; Zhang, M.; Wang, P. J. Am. Chem. Soc. 2011, 133, 11442–11445. (b) Yum, J.-H.; Baranoff, E.; Kessler, F.; Moehl, T.; Ahmad, S.; Bessho, T.; Marchioro, A.; Ghadiri, E.; Moser, J.-E.; Yi, C.; Nazeeruddin, M. K.; Grätzel, M. Nature Commun. 2012, 631(3), 1-8.
    (30) Sharma, G. D.; Roy, M. S.; Singh, S. P. J. Mater. Chem. 2012, 22, 18788.
    (31) Yang, J.; Guo, F.; Hua, J.; Li, X.; Wu, W.; Qu, Y.; Tian, H. J. Mater. Chem. 2012, 22, 24356.
    (32) Koumura, N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. J. Am. Chem. Soc. 2006, 128(44), 14256-14257.
    (33) Chen, C.-T.; Chao, S.-D.; Yen, K.-C.; Chen, C.-H.; Chou, I.-C.; Hon, S.-W. J. Am. Chem. Soc. 1997, 119, 11341.
    (34) (a) Chen, C.-T.; Chou, I.-C.; J. Am. Chem. Soc. 2000, 122, 7662. (b) Chen, C.-T.; Chen, W.-C.; Lee, Y.-W. Org. Lett. 2010, 12, 1472. (c) Chen, C.-T.; Chen, W.-C.; Lin, P.-C.; Chen, C.-H. Chem. Eur. J. 2010, 16, 12822.
    (35) (a) Wei, Y.; Chen, C.-T. J. Am. Chem. Soc. 2007, 129, 7478. (b) Chen, C.-T.; Wei, Y.; Lin, J.-S.; Moturu, M. V. R. K.; Chao, W.-S.; Tao, Y.-T.; Chien, C.-H. J. Am. Chem. Soc. 2006, 128, 10992. (c) Chen, C.-T.; Lin, J.-S.; Murthy, M.; Tao, Y.-T.; Chiang, C.-H. Chem. Commun. 2005, 3980. (d) Wei, Y.; Samori, S.; Tojo, S.; Fujitsuka, M.; Lin, J. S.; Chen, C. T.; Majima, T. J. Am. Chem. Soc. 2009, 131, 6698.
    (36) Hartwig, J. F. ACC. Chem. Res. 1998, 31, 852.
    (37) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
    (38) Qin, P.; Zhu, H.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. J. Am. Chem. Soc. 2008, 130, 8570.
    (39) (a) Pommerehne, J.; Vestweber, H.; Gusws, W.; Mahrt, R. F.; Bassler, H.; Porsch, M., R. F. Adv. Mater. 1995, 7, 551. (b) Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453. (c) Meng, H.; Chen, Z.-K.; Liu, X.-L.; Lia, Y.-H.; Chua, S.-J.; Huang, W. Phys. Chem. Chem. Phys. 1999, 1, 3123.
    (40) (a) Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Science, 2011, 334, 629. (b) Cid, J.-J.; Yum, J.-H.; Jang, S.-R.; Nazeeruddin, M. K.; Martínez-Ferrero, E.; Palomares, E.; Ko. J.; Grätzel, M.; Torres, T. Angew. Chem. Int. Ed. 2007, 46, 8358. (c) Imahori, H.; Umeyama, T.; Ito, S. Acc. Chem. Res. 2009, 42, 1809. (d) Martínez-Díaz, M. V.; de la Torrea, G.; Torres, T. Chem. Commun. 2010, 46, 7090. (e) Walter, M. G.; Rudine, A. B.; Wamser, C. C. J. Porphyrins & Phthalocyanines 2010, 14, 759.
    (41) (a) Kuang, D.; Walter, P.; Nüesch, F.; Kim, S.; Ko, J.; Comte, P.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Langmuir 2007, 23, 10906. (b) Choi, H.; Kim, S.; Kang, S. O.; Ko, J.; Kang, M.-S.; Clifford, J. N.; Forneli, A.; Palomares, E.; Nazeeruddin, M.; Grätzel, M. Angew. Chem. Int. Ed. 2008, 47, 8259.
    (42) Bessho, T.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau, E. W.-G.; Grätzel, M. Angew. Chem. Int. Ed. 2010, 49, 6646.
    (43) Chang, Y.-C.; Wang, C.-L.; Pan, T.-Y.; Hong, S.-H.; Lan, C.-M.; Kuo, H.-H.; Lo, C.-F.; Hsu, H.-Y.; Lin, C.-Y.; Diau, E. W.-G. Chem. Commun., 2011, 47, 8910.
    (44) Tang, C. W.; VanSlyke, S. A. Apply Phys. Lett. 1987, 51, 913.
    (45) VanSlyke, S. A.; Chen, C.-H.; Tang, C. W.; Apply Phys. Lett. 1996, 29, 2160.
    (46) Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Trum, S.; Wehrmann, R. Synth. Met. 2000, 11, 139.
    (47) Yamamoto, T.; Nishiyama, M.; Koie, Y. Tetrahedron Lett. 1998, 39, 2367.
    (48) Salbeck, J.; Yu, N.; Bauer, J.; Weissotel, F.; Bestgen, H. Synth. Met. 1997, 91, 209.
    (49) Shirota, J.; Okumoto, K.; Inada, H. Synth. Met. 2000, 111, 387.
    (50) (a) Wu, C.-C.; Liu, T.-L.; Hung, W.-Y.; Lin, Y.-T.; Wong, K.-T.; Chen, R.-T.; Chen, Y.-M.; Chien, Y.-Y. J. Am. Chem. Soc. 2003, 125, 3710. (b) Wong, K.-T.; Hwu, T.-Y.; Balaich, A.; Chao, T.-C.; Fang, F.-C.; Lee, C.-T.; Peng, Y.-C. Org. Lett. 2006, 8, 1415.
    (51) Wu, P.-C.; Yu, J.-K.; Song, Y.-H.; Chi, Y.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Organometallics 2003, 22, 4938.
    (52) (a) Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1996, 8, 579. (b) Shetty, A. S.; Liu, E. B.; Lachicotte, R. J.; Jenkhe, S. A. Chem. Mater. 1999, 1, 2292.
    (53) (a) O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl Phys. Lett. 1999, 74, 442. (b) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; D’Andrade, B. W.; Forrest, S. R. Appl Phys. Lett. 1999, 75, 4. (c) Naka, S.; Okada, H.; Onnagawa, H.; Tsutsui, T. Appl Phys. Lett. 2000, 76, 197.
    (54) Thomas, K. R. J.; Lin, J.-T.; Tao, Y.-T.; Chuen, C.-H. Adv. Mater. 2002, 14, 822.
    (55) Li, Z. H.; Wong, M. S.; Fukutani, H.; Tao, Y. Org. Lett. 2006, 8, 4271.
    (56) Liao, Y.-L.; Lin, C.-Y.; Wong, K.-T.; Hou, T.-H.; Hung, W.-Y. Org. Lett. 2007, 9, 4511.
    (57) (a) Lai, M.-Y.; Chen, C.-H.; Huang, W.-S.; Lin, J.-T.; Ke, T.-H.; Chen, L.-Y.; Tsai, M.-H.; Wu, C.-C. Angew. Chem. Int. Ed. 2008, 47, 581. (b) Chen, C.-H.; Huang, W.-S.; Lai, M.-Y.; Tsao, W.-C.; Lin, J.-T.; Wu, Y.-H.; Ke, T.-H.; Chen, L.-Y.; Wu, C.-C. Adv. Funct. Mater. 2009, 19, 2661.
    (58) Takizawa, S. Y.; Montes, V. A.; Anzenbacher, Jr. P. Chem. Mater. 2009, 21, 2452.
    (59) Tsuji, H.; Mitsui, C.; Sato, S.; Nakamura, E. Adv. Mater. 2009, 21, 3776.
    (60) Chen, C.-T.; Lin, J.-S.; Moturu, V. R. K.; Lin, Y.-W.; Wei, Y.; Tao, Y.-T.; Chien, C.-H. Chem. Commun. 2005, 3980.
    (61) Chen, C.-T.; Wei, Y.; Lin, J.-S.; Moturu, V. R. K.; Chao, W.-S.; Tao, Y.-T.; Chien, C.-H. J. Am. Chem. Soc. 2006, 128, 10092.
    (62) Wei, Y.; Chen, C.-T. J. Am. Chem. Soc. 2007, 129, 7478.
    (63) (a) Chao, W.-S.; Liao, K.-H.; Chen, C.-T.; Huang, W.-K.; Lan, C.-M.; Diau, E. W.-G. Chem. Commun. 2012, 48, 4884. (b) Lan, C.-M.; Wu. H.-P.; Pan, T.-Y.; Chang, C.-W.; Chao, W.-S.; Chen, C.-T.; Wang, C.-L.; Lin, C.-Y.; Diau, E. W.-G. Energy & Environ. Sci. 2012, 5, 6460.
    (64) (a) Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 89, 779. (b) Srivastava, R. R.; Collibee, S. E. Tetrahedron Letters 2004, 45, 8895. (c) Stazi, F.; Palmisano, G. M.; Santagostino, Turconi, M. Tetrahedron Letters 2005, 46, 1815. (d) Schareina, T.; Zapf, A.; Beller, M. Chem. Commun. 2004, 1388.
    (65) Yao, J. H.; Zhen, C.; Loh, K. P.; Chen, Z.-K. Tetrahedron 2008, 64, 10814.
    (66) Patridge, R. H. Polymer 1983, 24, 733.
    (67) Burrououghes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
    (68) Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.
    (69) Gmeiner, J.; Karg, S.; Meier, M.; Rieβ, W.; Strohriegl, P.; Schwoerer, M. Acta. Polym. 1993, 44, 201.
    (70) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477.
    (71) Herguch, P.; Jiang, X. Z.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2002, 35, 6094.
    (72) (a) Scherf, U.; Müllen, K. Makromol. Chem. Rapid Commun. 1991, 12, 489. (b) Scherf, U. J. Mater. Chem. 1999, 9, 1853.
    (73) (a) Grimsdale, A. C.; Müllen, K. Macromol. Rapid Commun. 2007, 28, 1676. (b) Zhou, G.; Baumgarten, M.; Müllen, K. J. Am. Chem. Soc. 2007, 129, 12211. (c) Jacob, J.; Sax, S.; Piok, T.; List, E. J. W.; Grimsdale, A. C.; Müllen, K. J. Am. Chem. Soc. 2004, 126, 6987.
    (74) Huang, H.-H.; Prabhakar, C.; Tang, K.-C.; Chou, P.-T.; Huang, G.-J.; Yang, J.-S. J. Am. Chem. Soc. 2011, 133, 8028.
    (75) (a) Wong, K.-T.; Chi, L.-C.; Huang, S.-C.; Liao, Y.-L.; Liu, Y.-H.; Wang,Y. Org. Lett. 2006, 8, 5029. (b) Wong, K.-T.; Chao, T.-C.; Chi, L.-C.; Chu, Y.-Y.; Balaiah, A.; Chiu, S.-F.; Liu, Y.-H.; Wang, Y. Org. Lett. 2006, 8, 5033.
    (76) (a) Zhou, G.; Baumgarten, M. and Müllen, K. J. Am. Chem. Soc. 2007, 129, 12211. (b) Jacob, J.; Sax, S.; Piok, T.; List, E. J. W.; Grimsdale, A. G. and Müllen, K. J. Am. Chem. Soc. 2004, 126, 6987. (c) Ie, Y.; Nitani, M. and Aso, Y. Chem. Lett. 2007, 36, 1326. (d) Poriel, C.; Rault-Berthelot, J.; Barrière, F. and Slawin, A. M. Z. Org. Lett. 2008, 10, 373. (e) Mishra, A. K.; Graf, M.; Grasse, F.; Jacob, J.; List, E. J. W. and Müllen, K. Chem. Mater. 2006, 18, 2879.
    (77) (a) Osaka, I.; Abe, T.; Shinamura, S.; Takimiya, K. J. Am. Chem. Soc. 2011, 133, 6852. (b) Vura-Weis, J.; Ratner, M. A.; Wasielewski, R. J. Am. Chem. Soc. 2010, 132, 1738. (c) Seo, J. H.; Gutacker, A.; Walker, B.; Cho, S.; Garcia, A.; Yang, R.; Nguyen, T. Q.; Heeger, A. J.; Bazan, G. C. J. Am. Chem. Soc. 2009, 131, 18220. (d) Nakano, M.; Mori, H.; Shinamura, S.; Takimiya, K. Chem. Mater. 2012, 24, 190. (e) Li, Y.; Wu, Y.; Gardner, S.; Ong, B. S. Adv. Mater. 2005, 17, 849. (f) Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. J. Am. Chem. Soc. 2005, 127, 614. (g) Boudreault, P.-L. T.; Wakim, S.; Blouin, N.; Simard, M.; Tessier, C.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2007, 129, 9125. (f) Li, Y.; Wu, Y.; Gardner, S.; Ong, B. S. Adv. Mater. 2005, 17, 849.
    (78) (a) Chang, C.-Y.; Cheng, Y.-J.; Hung, S.-H.; Wu, J.-S.; Kao, W.-S.; Lee, C.-H.; Hsu, C.-S. Adv. Mater. 2012, 24, 549. (b) Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Adv. Mater. 2010, 22, 3839. (c) Thompson, B. C.; Fréchet, M. J. Angew. Chem. Int. Ed. 2008, 47, 58. (d) Lin, L.-Y.; Chen, Y.-H.; Huang, Z.-Y.; Lin, H.-W.; Chou, S.-H.; Lin, F.; Chen, C.-W.; Liu, Y.-H.; Wong, K.-T. J. Am. Chem. Soc. 2011, 133, 15822.
    (79) Anthony, J. E. Angew. Chem.’ Int. Ed. 2008, 47, 452.
    (80) (a) Wong, K.-T.; Chien, Y.-Y.; Chen, R.-T.; Wang, C.-F.; Lin, Y.-T.; Chiang, H.-H.; Hsieh, P.-Y.; Wu, C.-C.; Chou, C.-H.; Su, Y. O.; Lee, G.-H. and Peng, S.-M. J. Am. Chem. Soc. 2002, 124, 11576. (b) Wu, C.-C.; Liu, T.-L.; Hung, W.-Y.; Lin, Y.-T.; Wong, K.-T.; Chen, R.-T.; Chen, Y.-M. and Chien, Y.-Y. J. Am. Chem. Soc. 2003, 125, 3710.

    (81) (a) Tsuji, H.; Mitsui, C.; llies, L.; Sato, Y.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 11902. (b) Tsuji, H.; Mitsui, Y.; Sato, Y.; Nakamura, E. Adv. Mater. 2009, 21, 3776.
    (82) (a) HANCOCK, J. E. H. and PAVIA, D. L. J. Org. Chem. 1961, 26, 4350 (b) Saltiel, J.; Zafiriou, O. C.; Megarity, E. D.; Lamola, A. A. J. Am. Chem. Soc. 1968, 90, 4759. (c) Saltiel, J.; Marinari, A.; Chang, D. W. L.; Mitchener, J. C.; Megarity, E. D. J. Am. Chem. Soc. 1979, 101, 2982. (d) Zhang, H.;Karasawa, T.; Yamada, H.; Wakamiya, A.; Yamaguchi, S. Org. Lett. 2009, 11, 3076
    (83) Song, S.; Jin, Y.; Kim, S. H.; Moon, J.; Kim, K.; Kim, J. Y.; Park, S. H.; Lee, K and Suh, H. Macromolecules 2008, 41, 7296
    (84) (a) Zhu, X.; Mitsui, C.; Tsuji, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 13596. (b) Zhu, X.; Tsuji, H.; Nakabayashi, K.; Ohkoshi, S.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 16342.
    (85) Renak, M. L.; Bartholomew, G. P.; Wang, S.; Ricatto, P. J.; Lachicotte, R. J. and Bazan, G. C. J. Am. Chem. Soc. 1999, 121, 7787.
    (86) (a) Chen, H. Z.; Jin, Y. D.; Xu, R. S.; Peng, B. X.; Desseyn, H.; Janssens, J.; Heremans, P.; Borghs, G.; Geise, H. J. Synthetic Materials 2003, 139, 529. (b) Tsuji, H.; Yokoi, Y.; Mitsui, C.; Ilies, L.; Sato, Y. and Nakamura, E. Chem. Asian J. 2009, 4, 655. (c) Lin, Z.; Lin, Y.-D.; Wu, C.-Y.; Chow, P.-T.; Sun, C.-H. and Chow, T. J. Macromolecules 2010, 43, 5925.
    (87) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467. (b) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46. (c) King, A. O.; Yasuda, N. Top. Organomet. Chem. 2004, 6, 205. (d) Chinchilla, R.; Najera, C. Chem. Soc. Rev. 2011, 40, 5084.
    (88) (a) Nakamura, M.; llies, L.; Otsubo, S.; Nakamura, E. Org. Lett. 2006, 8, 2803. (b) Nakamura, M.; llies, L.; Otsubo, S.; Nakamura, E. Angew. Chem. Int. Ed. 2006, 45, 944.

    無法下載圖示 本全文未授權公開
    QR CODE