研究生: |
辜敏韶 KU, Min-Shao |
---|---|
論文名稱: |
以理論計算方法探討CO在Cu(711)表面上的電化學還原 Computational Electrochemical Reduction of CO on Cu(711) surface |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 理論計算 、Cu(711) 、CO2 |
英文關鍵詞: | Theoretical calculation, Cu(711), CO2 |
DOI URL: | http://doi.org/10.6345/NTNU201900830 |
論文種類: | 學術論文 |
相關次數: | 點閱:188 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今社會中,使用銅做為電催化電極是現今將二氧化碳電還原成許多有用的燃料的其中一項主要方法。透過製備不同的銅電極材料表面來區分各種催化途徑成為CO2電還原化學最關注的主題之一;而催化體系設計的成功與否,取決於是否提高還原CO2的選擇性。利用理論計算,我們研究Cu(711)表面,以了解早期實驗觀察所顯示的C-C耦合的有趣選擇性。通過分析沿著CO2還原機理的各種關鍵中間體的電子結構,可以為設計用於Cn(n≥2)烴合成的Cu電極材料的新形態提供進一步的見解。
Carbon dioxide can be electrochemically reduced to many useful fuels using copper electrocatalysts. The differentiation of the various catalytic pathways by the preparation of Cu electrode materials becomes one of the most concerned topics for the CO2 electroreduction chemistry. The enhancement in the CO2 reduction selectivity determines the success of catalytic system design. Through theoretical calculations, we investigate Cu(711) surface in order to understand the intriguing selectivity for the C-C coupling shown by the early experimental observation. By analyzing the electronic structure of the various critical intermediates along the CO2 reduction mechanism, it will be possible to provide further insights for designing the new morphology of Cu electrode materials for Cn (n ≥ 2) hydrocarbon synthesis.
1. Garza, A. J.; Bell, A. T.; Head-Gordon, M., Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products. ACS Catalysis 2018, 8 (2), 1490-1499.
2. Yang, K. D.; Lee, C. W.; Jin, K.; Im, S. W.; Nam, K. T., Current Status and Bioinspired Perspective of Electrochemical Conversion of CO2 to a Long-Chain Hydrocarbon. J Phys Chem Lett 2017, 8 (2), 538-545.
3. Schouten, K. J.; Qin, Z.; Perez Gallent, E.; Koper, M. T., Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc 2012, 134 (24), 9864-7.
4. Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P., Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts. ACS Catalysis 2016, 6 (6), 3804-3814.
5. Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T., Morphology-Directed Selective Production of Ethylene or Ethane from CO2 on a Cu Mesopore Electrode. Angew Chem Int Ed Engl 2017, 56 (3), 796-800.
6. Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; Cuenya, B. R., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat Commun 2016, 7, 12123.
7. Zheng, Y.; Vasileff, A.; Zhou, X.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z., Understanding the Roadmap for Electrochemical Reduction of CO2 to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. J Am Chem Soc 2019, 141 (19), 7646-7659.
8. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy & Environmental Science 2012, 5 (5).
9. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science 2010, 3 (9).
10. Shi, C.; Hansen, H. A.; Lausche, A. C.; Norskov, J. K., Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys Chem Chem Phys 2014, 16 (10), 4720-7.
11. Hagman, B.; Posada-Borbon, A.; Schaefer, A.; Shipilin, M.; Zhang, C.; Merte, L. R.; Hellman, A.; Lundgren, E.; Gronbeck, H.; Gustafson, J., Steps Control the Dissociation of CO2 on Cu(100). J Am Chem Soc 2018, 140 (40), 12974-12979.
12. Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W.; Martin, J.; Venkatesan, T., Investigating the Role of Copper Oxide in Electrochemical CO2 Reduction in Real Time. ACS Appl Mater Interfaces 2018, 10 (10), 8574-8584.
13. Xiao, H.; Goddard, W. A., 3rd; Cheng, T.; Liu, Y., Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc Natl Acad Sci U S A 2017, 114 (26), 6685-6688.
14. Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W., A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles. ACS Cent Sci 2016, 2 (3), 169-74.
15. Cheng, T.; Xiao, H.; Goddard, W. A., Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance. J Am Chem Soc 2017, 139 (34), 11642-11645.
16. Bendavid, L. I.; Carter, E. A., CO2 Adsorption on Cu2O(111): A DFT+U and DFT-D Study. The Journal of Physical Chemistry C 2013, 117 (49), 26048-26059.
17. Tang, Q.; Lee, Y.; Li, D. Y.; Choi, W.; Liu, C. W.; Lee, D.; Jiang, D. E., Lattice-Hydride Mechanism in Electrocatalytic CO2 Reduction by Structurally Precise Copper-Hydride Nanoclusters. J Am Chem Soc 2017, 139 (28), 9728-9736.
18. Cheng, T.; Xiao, H.; Goddard, W. A., 3rd, Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water. J Am Chem Soc 2016, 138 (42), 13802-13805.
19. Calle-Vallejo, F.; Koper, M. T., Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed Engl 2013, 52 (28), 7282-5.
20. Nie, X.; Esopi, M. R.; Janik, M. J.; Asthagiri, A., Selectivity of CO(2) reduction on copper electrodes: the role of the kinetics of elementary steps. Angew Chem Int Ed Engl 2013, 52 (9), 2459-62.
21. Montoya, J. H.; Peterson, A. A.; Nørskov, J. K., Insights into CC Coupling in CO2Electroreduction on Copper Electrodes. ChemCatChem 2013, 5 (3), 737-742.
22. Garcia, G.; Koper, M. T., Dual reactivity of step-bound carbon monoxide during oxidation on a stepped platinum electrode in alkaline media. J Am Chem Soc 2009, 131 (15), 5384-5.
23. Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N., Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. Journal of Molecular Catalysis A: Chemical 2003, 199 (1-2), 39-47.
24. Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M., Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. J Phys Chem Lett 2016, 7 (8), 1471-7.
25. Kim, Y.; Trung, T. S. B.; Yang, S.; Kim, S.; Lee, H., Mechanism of the Surface Hydrogen Induced Conversion of CO2 to Methanol at Cu(111) Step Sites. ACS Catalysis 2016, 6 (2), 1037-1044.
26. Singh, M. R.; Kwon, Y.; Lum, Y.; Ager, J. W., 3rd; Bell, A. T., Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. J Am Chem Soc 2016, 138 (39), 13006-13012.
27. Cheng, T.; Xiao, H.; Goddard, W. A., 3rd, Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc Natl Acad Sci U S A 2017, 114 (8), 1795-1800.
28. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys. 1995, 117, 1-19
29. Jorgensen, W. L.; Tirado-Rives, J., The OPLS Potential Functions for Proteins. EnergyMinimizations for Crystals of Cyclic Peptides and Crambin J Am Chem Soc 1988, 110 (6), 1657-1665.
30. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J., J Am Chem Soc 1996, 118, 11225-11236.
31. Perez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T., Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes. Angew Chem Int Ed Engl 2017, 56 (13), 3621-3624.
32. Xiao, H.; Cheng, T.; Goddard, W. A., 3rd, Atomistic Mechanisms Underlying Selectivities in C(1) and C(2) Products from Electrochemical Reduction of CO on Cu(111). J Am Chem Soc 2017, 139 (1), 130-136.
33. Montoya, J. H.; Shi, C.; Chan, K.; Norskov, J. K., Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction. J Phys Chem Lett 2015, 6 (11), 2032-7.
34. Perez-Gallent, E.; Marcandalli, G.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M., Structure- and Potential-Dependent Cation Effects on CO Reduction at Copper Single-Crystal Electrodes. J Am Chem Soc 2017, 139 (45), 16412-16419.
35. Sandberg, R. B.; Montoya, J. H.; Chan, K.; Nørskov, J. K., CO-CO coupling on Cu facets: Coverage, strain and field effects. Surface Science 2016, 654, 56-62.
36. Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P., Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catalysis Today 2016, 260, 8-13.
37. Clark, E. L.; Wong, J.; Garza, A. J.; Lin, Z.; Head-Gordon, M.; Bell, A. T., Explaining the Incorporation of Oxygen Derived from Solvent Water into the Oxygenated Products of CO Reduction over Cu. J Am Chem Soc 2019, 141 (10), 4191-4193.
38. Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H., Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nature Catalysis 2018, 1 (2), 111-119.
39. Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T., Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. J Am Chem Soc 2017, 139 (32), 11277-11287.