研究生: |
林俊豪 Lin, Chun-Hao |
---|---|
論文名稱: |
以臉部微表情分析技術與眼球追蹤技術探討認知衝突實驗之成效 An Investigation on the Effectiveness of Cognitive Conflict Experiments by applying Facial Micro-Expression Analysis and Eye Tracking Techniques |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 臉部微表情 、眼球追蹤技術 、先備知識 、概念改變 、認知衝突 |
英文關鍵詞: | facial micro-expression, eye tracking techniques, prior knowledge, concept changes, cognitive conflicts |
DOI URL: | https://doi.org/10.6345/NTNU202204438 |
論文種類: | 學術論文 |
相關次數: | 點閱:270 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以臉部微表情分析技術與眼球追蹤技術探討認知衝突實驗之成效,研究內容包含三個主要研究目的,分別為(1)探討雙錐體上坡實驗是否具備認知衝突的教學效果,教學過程中有無概念改變的可能性。(2)探討雙錐體上坡實驗在使用OEVC組(無預測)、POEVC兩種教學設計在概念成就上有無差異。(3)探討使用雙錐體上坡實驗在臉部微表情變化與眼球追蹤紀錄之關聯性。
本研究主要利用科學概念問卷檢測大學生對於雙錐體上坡實驗的科學概念是否正確,研究設計包含雙錐體上坡認知衝突實驗與融入POEVC的教學設計,教材設計包含視覺化表徵的教學影片與文字表徵的文字投影片,並討論過程中受試者對於預測步驟的成效差異。施測過程中利用臉部微表情分析技術與眼球追蹤系統來收集學習歷程的生理資訊,用來分析認知衝突實驗對於受試者的影響,並討論表情變化與眼球生理訊號的關聯性,藉由學習歷程與學習成效來討論認知衝突實驗的設計建議與學習效果分析。分析受試者科學概念問卷表現來了解先備知識的差異與教學後的成效,概念問卷的試題類型主要以是非問答題、單一選擇題、非選題、生活情境題等題型來評估是否具有迷思概念與精力教學的結果是否達到概念改變的條件,雙錐體上坡的科學概念選擇則以高中範圍的力學為主,主要有轉動與力矩等科學概念。
本研究的結果發現:
(1)由前測成績在理組與文組間無顯著差異,後測成績理組與文組達顯著,t(18.929)=3.688,(p=0.002),關鍵概念在兩組的後測結果也達顯著,t(31)=1.773,(p=0.002),可知科學概念對不同組別受試者的理解難易程度會表現在運用認知衝突實驗的教學成效。
(2)由前後測中的生活情境題結果可知,文組學生在後測的生活情境題中成績與理組比較結果具有顯著性t(31)=-.992,(p=0.042),可知使用認知衝突情境的實驗在融入教學設計對於關鍵概念的學習是具有成效的。
(3)由實驗影片與關鍵概念教學的各興趣區間數值比較發現,除純滾動文字教學的空白區域外,由各項本研究的眼動指標數值發現,文組受試者的眼動指標數值皆大於理組,可知認知衝突實驗與文字教學設計在眼動指標上與不同類組的受試者有關。文組在前後測成績進步較佳,但與理組的進步成績無顯著性。
(4)認知衝突實驗設計與先備知識有關,例如文組與理組對純滾動概念在高中課程的差異造成具有的先備知識不同,因此在文字教學中的凝視頻率具有顯著差異,t(31)=-1.015,(p=0.01)。
(5)認知衝突實驗影片的播放速度對於不同實驗具有不同的成效,由臉部表情變化指標可知不同受試者會產生微表情變化的區間分布在不同的播放速度區間。不同區間的臉部微表情變化與眼動指標數值具有差異,但未達顯著性。
The main purpose of the study is to investigate the effectiveness of cognitive conflict experiments by applying subtle facial expression analysis and eye tracking techniques. There are mainly three objectives in the study: (1) Discuss whether the anti-gravity double-cone experiment has achieved the teaching effect of cognitive conflicts and the possibility of concept changes during the teaching. (2) Examine if there are differences in students' conceptual understanding after using OEVC (no predicted step) and POEVC these two instructional designs in anti-gravity double-cone experiment. (3) Explore the connection between facial micro-expression and eye tracking records in anti-gravity double cone experiment.
This study principally uses scientific questionnaires to examine whether undergraduates’ scientific concepts in anti-gravity double-cone experiment are correct. The research designs include cognitive conflict situations in anti-gravity double cone experiment and instructional design that incorporates POEVC pedagogy. The teaching materials comprise instructional video with visual representations and slides with writing representations. Also, differences in subjects' achievements on the predicted steps will be discussed. During the testing, facial micro-expression analysis and eye tracking system are applied to collect physical information of subjects' learning process, which is used to analyze the influence of the experiment and discuss the connection between changes in facial expression and eye tracking signals. By discussing the learning progress and achievements, we make suggestions to the design of cognitive conflict experiment and analyze subjects' learning outcomes. In addition, the research analyzed subjects' performance in scientific questionnaires to realize the difference in prior knowledge and teaching outcomes. The types of questions in concept questionnaires consist mainly of true or false questions, multiple choice questions, essay questions and situational questions to evaluate whether subjects' having mythical concepts and outcomes of vigorous teaching match the condition of concept changes. On the other hand, the choice of scientific concepts in anti-gravity double-cone experiment chiefly covers the scope of machanics at senior high school level, with scientific concepts such as rotary motion and moment of force.
The study results are as follows:
(1)The pre-training questionnaire results do not vary much for the students of science major and literature major. The post-training questionnaire results for both majors reflect only slight difference, t (31) =1.773, (p=0.002), showing that the difficulty of understanding scientific concepts for either majors demonstrate the instructional effectiveness of cognitive conflicts experiment.
(2)From the results of situational-type questions, the literature students has more outstanding results in the post-training questionnaire when compared to the science students, t (31) = -.992, (p=0.042). This shows the effectiveness of incorporating experiment with cognitive conflict situations into instructional designs.
(3)By comparing indicators on different levels of interest from the instructional videos and key concepts learning, but omitting the text instructional presentation on the pure rolling principle, the eye tracking indicators in this study found that literature students score higher indicators than science students. This shows that cognitive conflict experiment and text instructional design are highly correlated with eye tracking indicators and different groups of subjects. The literature majors show higher improvement in the questionnaire results taken post-training, but the improvement difference is not significant compared to that of the science majors.
(4)The design of cognitive conflict experiment is relevant to students' prior knowledge. For example, for both science and literature students, their prior understanding of the pure rolling concept depends on the level of their high school courses. Therefore, the gaze frequency during the text instructional presentations have higher distinctions, t (31) = -1.015, (p=0.01).
(5)The playing speed of the cognitive conflict experiment video achieves different results in different experiments. The indicator for facial expression changes shows that the interval in which the subjects’ facial micro-expression changes is correlated to the different intervals of video playing speed. The value index level of facial micro-expressions and eye movement in different intervals portray a difference, but with low significance.
中文部分
李文石(2006)。運用概念構圖輔以小組討論在高中力學學習之研究。國立彰化師範大學物理學系物理教學碩士班論文,未出版,彰化。
李曉雯、徐順益、林建隆、張英琦(2008)。應用Chi的本體論探討九年級學生轉動與力矩之迷思概念。科學教育學刊,9(2),11-12。
林郁芬(2011)。空間能力、先備知識與表徵順序對七年級概念理解之影響:以人體呼吸運動單元為例。國立臺灣師範大學科學研究所碩士論文,未出版,台北。
邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
邱美虹、林世洲、湯偉君、周金城、張榮耀、王靜璇合著(2005)。科學創意實驗書。台北市:洪葉文化。
南一出版社(2011)。國民中學自然與生活科技第四冊。台南市,南一。
教育部(2008)。國民中小學九年一貫課程綱要。台北市,教育部。
陳美玲、白菁汝、黃映慈、洪惠君(2008)。高中物理之重心與平衡的教學活動暨較具設計。科學教育學刊,9(2),103-112。
許良榮(1996a)。課文結構與先備知識對於科學理論之學習助益性的研究。台中師院學報,10,471-504。
許良榮(1996b)。圖形與科學課文學習關係的探討。教育研究資訊,4(4),121-131。
黃堯琮(2012)。利用眼球追蹤技術探討科學圖文閱讀歷程與概念理解之關係。國立臺灣師範大學科學教育研究所碩士論文,未出版,台北。
張志康(2009)。從Chi與Vosniadou的綜合理論探究建模教學對學生力學概念便之影響。國立臺灣師範大學科學教育研究所碩士論文,未出版,台北。
張英琦(2008)。以多面向之概念改變架構融入5E探究式教學策略發展轉動與力矩單元探討國三學生概念改變之研究。國立彰化師範大學物理學系物理教學碩士班論文,未出版,彰化。
楊凱悌、邱美虹、王子華(2009)。應用數位影音融入POE教學改善國小高年級學童脊椎動物分類另有概念之效益研究。科學教育學刊,17(5),387-407。
劉俊庚(2002)。迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響。國立臺灣師範大學科學教育研究所碩士論文,未出版,台北。
蔡春風(2009)。透過建模與多重表徵教學探討高二學生的建模能力與概念改變-以空間概念為例。國立臺灣師範大學科學教育研究所碩士論文,未出版,台北。
蔡興國、張惠博、陳錦章(2014)。使用系統基模教學策略修正高中學生力的迷思概念之研究。科學教育學刊,370,1-18。
鄭如芬(2002)。國中學生在力學課程後對力學運動概念認知之現況調查研究。國立臺灣師範大學物理學研究所碩士論文,未出版,台北。
謝秉桓(2014)。以新興臉部微表情分析技術探討電腦互動POEC與師生共構教學之成效-奈米級鐵粉燃燒認知衝突實驗。國立臺灣師範大學科學教育所碩士論文,未出版,台北。
英文部分
Chi, M. T. H., Slotta, J. D., & deLeeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts, Learning and instruction, 4, 27-43.
Chiu, M. H., Chou, C. C., Wu, W. L., & Liaw, H. (2014). The role of facial microexpression state (FMES) change in the process of conceptual conflict, British Journal of Educational Technology,45(3), 1365-1378.
Carroll, P. J., Young, J. R., &; Guertin, M. S. (1992). Visual analysis of cartoons: A view from the far side. In K. Rayner (Ed.), Eye movements and visual cognition: Scene perception and reading ,444–461. New York: Springer-Verlag.
Darwin, C. R. (1896). The expression of emotions in man and animals. New York: Appleton.
Ekman, P. (1999). Facial expressions. In T. Dalgleish & M. Power (Eds.), Handbook of cognition and Emotion. New York, NY: John Wiley & Sons, Ltd.
Ekman, P., & Friesen,W. V. (1978). Facial action coding system: A technique for the measurement of facial movement. Palo Alto, CA: Consulting Psychologists Press.
Ekman, P., Friesen, W. V., & Hager, J. C. (2002). The facial action coding system. Salt Lake City, UT: Research Nexus eBook.
Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 26(11),471-486.
Hammal, Z., Couovreur, L., Caplier, A., & Rombaut, M. (2007). Facial expression classification: An approach based on the fusion of facial deformations using the transferable belief model. International Journal of Approximate Reasoning, 46, 542-567.
Hoffamn, J. E., &; Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception &; Psychophysics, 57, 787-795.
Kring, A.M., & Sloan,D.M. (2007).The facial expression coding
system(FACES):Development, validation,and utility. Psychological Assessment,
19(2), 210-224.
Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20, 167-171
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422
Slykhuis, D. A., Wiebe, E. N., &; Annetta, L. A. (2005). Eye-tracking students’ attention to PowerPoint photographs in a science education setting. Journal of Science Education and Technology, 14(4), 509-520.
White, R., & Gunstone,R.F. (1992).Prediction-observation-explanation. In R. White & R. F. Gunstone, Probing Understanding(pp.44-64). London: The Falmer Press.
Yen, M. H. & Yang, F. Y. (2016). Methodology and application of eye-tracking
techniques in science education Science Education Research and Practices in Taiwan: Challenges and Opportunities. Springer Singapore, 249-277