簡易檢索 / 詳目顯示

研究生: 鄭皓文
論文名稱: 脈衝式雷射製作氮化鋁層之研究
The study of AlN layer manufacturing by pulsed laser
指導教授: 鄭慶民
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: 氮化鋁雷射氣體氮化脈衝式Nd:YAG雷射田口方法
英文關鍵詞: Aluminum nitride, Laser gas nitride, Pulse Nd: YAG laser, Taguchi method
論文種類: 學術論文
相關次數: 點閱:638下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在找出雷射氣體氮化參數對氮化鋁品質特性之影響。首先在大氣環境且不添加填料的情況下,採用氮氣與氨氣為反應氣體,利用脈衝式Nd:YAG雷射為能量源,在鋁合金5052上製作氮化鋁層。接著用光學顯微鏡觀察氮化鋁層、量測其厚度,再以SEM、EDS及EMPA分析組織結構及成分。最後利用田口方法設定雷射氣體氮化最適參數,並以變異數分析法進行分析。研究結果顯示,利用前述方法製作的氮化層由淺至深為緻密顆粒狀和鬆散的樹葉狀,其厚度可達14μm。就氮化層含氮量而言,以氨氣進行氮化的效果優於氮氣。經田口方法所得到之最適製作參數為雷射功率40W、脈衝寬度3.7ms、脈衝頻率5Hz、雷射速度1.5cm/min。參數所選之四個因素中,以雷射功率、雷射速度為氮含量影響最重要的因素,其中以雷射功率為最顯著的因素。

    This study attempted to characterize the effects of the laser gas nitride parameters on the formation of aluminum nitride. By using nitrogen and ammonia as reactors and pulse Nd: YAG laser as laser medium under standard atmosphere condition without filler, the experiments were performed on the aluminum alloy 5052 with Aluminum nitride layers (AlN layers) manufacturing. We studied the surface morphology by Optical Microscope and analyzed the structure and composition by SEM、EDS and EPMA. Taguchi method was selected to set the optimized parameters of laser gas nitride. The analysis of data was carried out by ANOVA. Our results indicate that AlN layers structure from the outside to the inside are dense granularity and loosely leafy, which could reach to 14μm in thickness. The nitrogen content (N-content) of nitride layer made by ammonia is superior to those of nitrogen made. The optimized parameters obtained by Taguchi method are as following: Laser Power 40W, Pulse Width 3.7ms, Pulse Frequency 5Hz, Laser travel speed 1.5cm/min. It is shown that N-content of AlN layers relates mainly to Laser Power and Laser travel speed. Laser power has the central place in aluminum nitride formation.

    中文摘要 i Abstract ii 謝誌 iii 目 錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 研究緣起與背景 1 1.2 研究動機 3 1.3 研究目的 5 第二章 文獻探討 6 2.1 鋁合金特性及分類 6 2.1.1 鋁合金特性 6 2.1.2 鋁合金的分類 7 2.1.3 鋁合金5052的介紹 8 2.2 Nd:YAG雷射原理與系統 10 2.2.1 雷射原理 10 2.2.2 雷射光的特性 11 2.2.3 雷射的種類 12 2.2.4 雷射基本要素 13 2.2.5 Nd:YAG雷射之機構 15 2.2.6 雷射之控制參數 16 2.3 雷射氮化 20 2.3.1 雷射氮化之原理 21 2.3.2 雷射氮化之優點 22 2.4 氮化鋁的特性及熱傳導原理 22 2.4.1 氮化鋁的特性 22 2.4.2 氮化鋁的熱傳導原理 23 2.5 田口方法 25 2.5.1 品質的定義 25 2.5.2 品質特性的內涵 26 2.5.3 參數分類 27 2.5.4 信號雜音比(SN比) 27 2.5.5 直交表(Orthogonal attay) 29 2.5.6 數據解析與分析 31 2.5.7 變異數(ANOVA)分析 31 第三章 研究設計與實施 33 3.1 實驗設計流程 33 3.2 前置實驗 35 3.2.1 實驗試片及前處理 35 3.2.2 製作原理 35 3.2.3 實驗設備裝置 36 3.3 鋁合金雷射表面氮化之參數設計 38 3.4 金相顯微組織觀察 40 3.5 SEM顯微觀察 43 3.6 X光繞射分析(XRD) 44 3.7 電子探測微分析(EPMA) 45 第四章 實驗結果與討論 46 4.1 雷射製程參數對製作氮化層之影響 46 4.1.1 銲點直徑及重疊率之量測 46 4.2 氮化層之顯微組織觀察 50 4.2.1 雷射氮氣氮化之金相組織觀察 50 4.2.2 雷射氨氣氮化之金相組織觀察 53 4.3 雷射氮氣氮化之SEM觀察與EDS分析 56 4.3.1 氮化層之SEM觀察 56 4.3.2 氮化層之EDS分析 59 4.4 雷射氨氣氮化之SEM觀察與EDS分析 62 4.4.1 氮化層之SEM觀察 62 4.4.2 氮化層之EDS分析 66 4.5 電子探測微分析(EPMA) 69 4.6 田口方法分析 70 4.6.1 SN比計算 70 4.6.2 最適參數之初步解析 71 4.6.3 變異數(ANOVA)分析 73 4.6.4 驗證實驗 74 4.7 最適參數實驗結果 75 4.7.1 氮化層之顯微組織觀察 75 4.7.2 氮化層之成分分析 77 第五章 結論與建議 79 5.1 結論 79 5.2 建議 80 參考文獻 81

    [1] 邱國創,LED陶瓷散熱基板之發展與應用,工業材料雜誌,293,127-131,2011。
    [2] 工業材料雜誌編輯室,高功率LED用基板材料的發展近況,工業材料雜誌,254,164-168,2008。
    [3] 李豫華,發光二極體的散熱技術,科學發展,435,18-21,2009。
    [4] H. K. Sander, "High-tech Ceramics", CE News, July 9, (1984).
    [5] C. Boulmer-Leborgne, A. L. Thomann, P. Andreazza, C. Andreazza-Vignolle, J. Hermann, V. Craciun, P. Echegut, D. Craciun, "Excimer laser synthesis of thin AlN coatings", Applied Surface Science 125, 137–148, (1998).
    [6] Jin-Yu Qiu et al., "Low-temperature sintering behavior of the nano-sized AlN powder achieved by super-fine grinding mill with Y2O3 and CaO additives," Journal of the European Ceramic Society 26, 385–390, (2006).
    [7] P. Schaaf, "Laser nitriding of metals," Progress in Materials Science 47(1), pp. 1–161, (2002).
    [8] 金重勳,機械材料,第五版,復文書局,363-401,1998。
    [9] 呂宗興、楊振寰,工業材料第56期,pp.58-59,1994。
    [10] 黃錦鐘,鋁合金的銲接(一)-鋁合金的種類與基本知識,機械月刊,第22卷,第7期,328-336,1996。
    [11] 劉文海,鋁合金新材料的方展動向,機械工業雜誌,第291期,2007。
    [12] 廖志家,銲前與銲後冷加工對鋁合金5052銲件機械性質影響之研究,國立台灣師範大學工業教育學系,碩士論文,2001。
    [13] 丁勝懋,光電工程。台北:中國電機工程學會,1999。
    [14] 黃俊榮,AZ型鎂合金微銲接之最適參數研究,國立台灣師範大學機電科技學系,碩士論文,2005。
    [15] 陳飛祥,鋯合金702應用氬銲與CO2雷射銲之銲接性研究,國立台灣師範大學機電科技學系,碩士論文,2009。
    [16] F. Fariaut, C. Boulmer-Leborgne, "Light alloy upgrading by surface laser treatment", Proc. SPIE 4760, 125, (2002).
    [17] Punkari, A., Weckman, D. C. and Kerr, H. W., "Effects of magnesium content on dual beam Nd:YAG laser welding of Al-Mg alloys", Science and Technology of Welding and Jointing, Vol.8 No.4, pp.269-281, (2003).
    [18] 蔡偉崙,脈衝式Nd:YAG雷射銲接5052鋁合金薄板製程參數之研究,中國機械工程學會第二十屆全國學術研討會論文集,第D冊 製造與材料 上集,頁127-133,2003。
    [19] Eric Sicard, Caroline Andreazza-Vignolle, Chantal Boulmer-Leborgne, Philippe C. Delaporte, Marc L. Sentis and Michel Frainais, "Light alloy valorization by excimer laser surface nitriding", Proc. SPIE 3885, 148, (2000).
    [20] Ramasamy, Sivakumar. CO2 and Nd:YAG laser beam Nd:YAG laser beam welding of 6111-T4 and 5754-O aluminum alloys for automotive applications.pp.18-31. New York: UMI Dissertation Information Service, (1997).
    [21] T.M. Yue, L.J. Yan, C.P. Chan, "Stress corrosion cracking behavior of Nd:YAG laser-treated aluminum alloy 7075", Applied Surface Science 252, 5026–5034, (2006).
    [22] 蔡偉崙,脈衝式Nd:YAG雷射封裝3003鋁合金方型鋰電池殼體之機械性質與熱傳分析,國立台灣師範大學工業教育學系,碩士論文,2004。
    [23] P. Schaaf, "Laser Nitriding and Laser Carburizing of Surfaces," Proc. SPIE 5147, 404, (2003).
    [24] C. Meneau, P. Andreazza, "Laser surface modification: structural and tribological studies of AlN coatings",Surface and Coatings Technology 100-101, 12-16, (1998).
    [25] Eric Sicard, Caroline Andreazza-Vignolle, Chantal Boulmer-Leborgne, Philippe C. Delaporte, Marc L. Sentis and Michel Frainais, "Light alloy valorization by excimer laser surface nitriding", Proc. SPIE 3885, 148, (2000).
    [26] 汪建民,陶瓷技術手冊,中華民國科技發展協進會,中華民國八十三年七月。
    [27] 林偉湟,利用AlN薄膜材料於MIS結構之製作與特性量測研究,國立高雄大學機電工程學系研究所碩士論文,2007。
    [28] 楊詠鈞,奈米氧化鋁粉體之合成製程開發,國立成功大學化學工程學系,碩士論文,2008。
    [29] 黃昌偉,陶瓷材料之熱性質分析,精密陶瓷特性及檢測分析,P.10.1-10.54。
    [30] K. Watari, "Phonon scattering and thermal conduction mechanisms of sintered aluminum nitride ceramics," Journal of materials science 28, 3709–3714, (1993).
    [31] 黃育賢,氧化鋁陶瓷材料之微波燒結研究,國立成功大學化學工程研究所,碩士論文,2008。
    [32] K. Watari, K. Ishizaki, "Thermal conduction mechanism of aluminum nitride ceramics," Journal of materials science 27, 2627–2630, (1992).
    [33] B. Abeles, "Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures," Physical Review 131, 1906–1911, (1963).
    [34] 盧彥富,薄壁球狀石墨鑄鐵之研發,國立台灣師範大學工業教育學系,碩士論文,2003。
    [35] 于鶴齡,脈衝式Nd:YAG雷射銲接封裝技術最適化參數之研究。國立清華大學工程與系統科學系,碩士論文,2002。
    [36] 田口玄一,田口方法講座(1),開發設計階段的品質工程(田口品質工程組譯),台北:中國生產力中心,1990。
    [37] 田口玄一,田口方法講座(2),製造階段的品質工程(田口品質工程組譯),台北:中國生產力中心,1990。
    [38] 田口玄一,田口式品質工程技術手冊(修訂版),台北:中國生產力中心,1994。
    [39] 田口玄一,靜態參數設計,經濟部工業局八十七年度工業技術人才培訓計畫講義,台北:中國生產力中心,1996。
    [40] 田口玄一,允差設計,經濟部工業局八十七年度工業技術人才培訓計畫講義,台北:中國生產力中心,1996。
    [41] Weisheit, A., Galun, R., & Mordike, B. L., "CO2 Laser Beam Welding of Magnesium-Based Alloys. Welding Journal," Vol:77, No:4. pp.149-154, (1997).

    下載圖示
    QR CODE