研究生: |
陳家揚 Jia-Yang Chen |
---|---|
論文名稱: |
鬼臼毒素衍生物對於肺癌細胞生長、轉移抑制能力及其作用機制之探討 Inhibition of cancer cell growth and migration of podophyllotoxin derivative in lung cancer cells and its mechanistic study |
指導教授: |
王憶卿
Wang, Yi-Ching |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 鬼臼毒素 、抗癌藥物 、微小管抑制劑 |
英文關鍵詞: | podophyllotoxin derivative, anti-tumor agent, microtubule inhibitior |
論文種類: | 學術論文 |
相關次數: | 點閱:257 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1982年起,癌症即為台灣地區十大死因之首,現已成為疾病死亡之主要原因之一,其中肺癌的死亡率近年來無論於男性或女性皆高居癌症死亡原因前二位,且台灣地區肺癌死亡率的增加速度亦有逐年上升之趨勢;雖然現有之外科手術、放射線治療等方式不斷進步,以及不斷的有新穎的化學治療藥物被發展出來,包括許多天然植物的萃取物如紫杉醇、常春花鹼類藥物、以及喜樹鹼類藥物,但化療藥物對於病人所產生的副作用以及藥物所具有的潛在抗藥性,仍為抗癌藥物發展受阻的重要原因。
鬼臼毒素 (podophyllotoxin) 原為自天然植物所萃取之天然藥物,對於細胞骨架microtubule具有很高的去穩定化作用,造成細胞無法正常分裂並使細胞週期停止於細胞分裂期,最後造成細胞凋亡 (apoptosis)。鬼臼毒素在早期便已被作為藥物使用,但因其對於正常細胞以及癌細胞的毒殺選擇性較不佳,又因其使用後所造成的強烈副作用,導致鬼臼毒素無法被使用在臨床癌症的治療上。
Ching001為中研院化學所李文山博士所發展,針對鬼臼毒素的結構進行修飾後所產生的鬼臼毒素衍生物,在本篇實驗中發現,新穎的鬼臼毒素衍生物Ching001對於不同肺癌細胞株皆有相當高的毒殺作用,在低濃度處理時,對於正常肺細胞則無明顯之細胞毒性。而Ching001的作用機轉,主要也是作用於細胞骨架microtubule上,造成microtubule的聚合受到抑制並進一步增加不穩定性,使肺癌細胞無法順利進行細胞分裂,並使細胞週期停止於G2/M期,如再持續以Ching001處理肺癌細胞,則會進一步影響細胞內之訊息傳遞,降低細胞凋亡抑制蛋白Bcl-2之表現量,並活化細胞凋亡所需之蛋白酶caspase-9,造成細胞走向細胞凋亡,而達到其抑制肺癌細胞生長增殖並造成細胞毒殺作用之能力。再者我們亦發現Ching001會藉由減少Rac、Rho等訊息傳遞之表現量而使細胞骨架actin filament的結構發生改變,失去filopodium或lamellipodium等促進細胞移動能力之外表型態,並於in vitro實驗中發現可以有效的抑制具有高度轉移潛力的肺癌細胞株CL1-5之轉移能力。在動物實驗中,給予2 mg/kg Ching001治療的裸小鼠其腫瘤之生長也明顯受到抑制達15天之久,並於裸小鼠之血液、生化檢查以及組織切片染色中亦發現,Ching001對於裸小鼠之正常生理功能並不具有明顯的傷害或引發免疫反應,並於腫瘤切片中可觀察到細胞凋亡發生,且實驗期間裸小鼠之體重亦維持於正常範圍內。
根據以上實驗結果,我們認為此一新穎的鬼臼毒素衍生物Ching001對於正常肺細胞與肺癌細胞具有專一性之毒殺作用,並且對於裸小鼠中能有效抑制腫瘤生長,並無產生嚴重生理損害以及造成嚴重副作用,相當具有潛力可以發展成為新穎的癌症用藥。且其對於肺癌細胞的轉移抑制能力,亦具有潛力發展成為抑制肺癌細胞轉移的新穎藥物。
Since 1982, cancer had been the leading cause disease of death in Taiwan, and the mortality of lung cancer has risen most dramatically in both men and women. Recently, the improvement in surgical and radiotherapeutic remedy, and more and more chemotherapy drugs including many potential anti-cancer drugs investigated from nature plant such as Taxol, Vinorelbin, and Camptothecin had been developed. However, the serious side effects and the potent in drug resistance of these drugs, still remain difficult for their development as anti-cancer drugs.
Podophyllotoxin is a nature compound purified from Podophyllum peltatum. It has strong polymerization inhibition ability toward the cell skeleton microtubule. It prevents the cell from normal mitosis and causes G2/M arrest of the cell, finally results in cell apoptosis. Podophyllotoxin had been used as medicine in different countries for thousand of years. However, its poor selectivity to normal/tumor cells and serious side effects after drug treatment prevent it from the usage as anti-cancer drugs.
Ching001, a podophyllotoxin derivatives developed from Dr. Wen-Shan Li at Institute of Chemistry of Academia Sinica in Taiwan. Ching001 was modified for the purpose to be a potential anti-cancer drug. In the present study, we found that novel podophyllotoxin derivative Ching001 had highly cytotoxicity toward different lung cancer cell lines, whereas Ching001 showed low cytotoxicity to the normal lung cell line. In addition, it prevented lung cancer cell from mitosis by inhibiting the polymerization of microtubule and causing cell cycle arrest at G2/M phase. These events eventually led to apoptosis through inhibition of the expression of anti-apoptosis factor Bcl-2 and activation of the expression of apoptosis protease caspase-9. Importantly, Ching001 could effectively inhibit the highly metastasis potential lung cancer cell line CL1-5 through inhibit actin filament construction signaling factors Rac and Rho to inhibit the filopodia or lamellipodia construction. In migration assay experiment, we proved that Ching001 treatment could inhibit the cell from migration in vitro. In the animal model test, 2 mg/kg Ching001 treatment could apparently inhibit the tumor growth for 15days and the effect was stronger than Taxol treatment at same dosage. The hematology and biochemistry tests of nude mice blood samples as well as tissue staining indicated that Ching001 treatment did not distinctively influence the normal function of vitality in animal model. In addition, tumor tissue staining showed that after Ching001 treatment, it induced apoptosis of tumor cells and led to tumor nodule shrinkage.
According to the experiments described above, we believed that novel podophyllotoxin derivative Ching001 will be a potential anti-cancer drug. It may be a good anti-metastasis agent as well.
Anand-Apte, B., and Zetter, B. (1997). Signaling mechanisms in growth factor-stimulated cell motility. Stem Cells 15, 259-267.
Ardizzoni, A. (2004). Topotecan in the treatment of recurrent small cell lung cancer: an update. Oncologist 9 Suppl 6, 4-13.
Bedows, E., and Hatfield, G.M. (1982). An investigation of the antiviral activity of Podophyllum peltatum. J Nat Prod 45, 725-729.
Belkin, M. (1948). Effects of podophyllin on trasplanted mouse tumor. Journal of Pharmacology And Experimental Therapeutics 93, 18-25.
Bishop, J.F., Kefford, R., Raghavan, D., Zalcberg, J., Stuart-Harris, R., Ball, D., Olver, I.N., Friedlander, M., Bull, C., Yuen, K., et al. (1990a). Etoposide, carboplatin, cyclophosphamide and vincristine in previously untreated patients with small-cell lung cancer. Cancer Chemother Pharmacol 25, 367-370.
Bishop, J.F., Lowenthal, R.M., Joshua, D., Matthews, J.P., Todd, D., Cobcroft, R., Whiteside, M.G., Kronenberg, H., Ma, D., Dodds, A., et al. (1990b). Etoposide in acute nonlymphocytic leukemia. Australian Leukemia Study Group. Blood 75, 27-32.
Boas, J., Rasmussen, D., Hansen, O.P., Engelholm, S.A., and Dombernowsky, P. (1990). Phase II study of teniposide in advanced breast cancer. Cancer Chemother Pharmacol 25, 463-464.
Bokemeyer, C. (1998). Current trends in chemotherapy for metastatic nonseminomatous testicular germ cell tumors. Oncology 55, 177-188.
Borsche, W., and Nieman, J. (1932). Podophyllin. Justus Liebigs Ann Chem 494, 126-142.
Bosl, G.J., Geller, N.L., Bajorin, D., Leitner, S.P., Yagoda, A., Golbey, R.B., Scher, H., Vogelzang, N.J., Auman, J., Carey, R., et al. (1988). A randomized trial of etoposide + cisplatin versus vinblastine + bleomycin + cisplatin + cyclophosphamide + dactinomycin in patients with good-prognosis germ cell tumors. J Clin Oncol 6, 1231-1238.
Budman, D.R. (1992). New vinca alkaloids and related compounds. Semin Oncol 19, 639-645.
Budman, D.R. (1997). Vinorelbine (Navelbine): a third-generation vinca alkaloid. Cancer Invest 15, 475-490.
Byl, J.A., Cline, S.D., Utsugi, T., Kobunai, T., Yamada, Y., and Osheroff, N. (2001). DNA topoisomerase II as the target for the anticancer drug TOP-53: mechanistic basis for drug action. Biochemistry 40, 712-718.
Carli, M., Perilongo, G., di Montezemolo, L.C., De Bernardi, B., Ceci, A., Paolucci, G., Pianca, C., Calculli, G., Di Tullio, M.T., Grotto, P., et al. (1987). Phase II trial of cisplatin and etoposide in children with advanced soft tissue sarcoma: a report from the Italian Cooperative Rhabdomyosarcoma Group. Cancer Treat Rep 71, 525-527.
Carlson, R.W., Dorfman, R.F., and Sikic, B.I. (1990). Successful treatment of metastatic thymic carcinoma with cisplatin, vinblastine, bleomycin, and etoposide chemotherapy. Cancer 66, 2092-2094.
Chen, G.L., Yang, L., Rowe, T.C., Halligan, B.D., Tewey, K.M., and Liu, L.F. (1984). Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 259, 13560-13566.
Cox, E.B., Vogel, C.L., Carpenter, J.T., Jr., and Raney, M. (1988). Phase II evaluation of teniposide (VM-26) in metastatic breast carcinoma. A Southeastern Cancer Study Group trial. Invest New Drugs 6, 37-39.
Desbene, S., and Giorgi-Renault, S. (2002). Drugs that inhibit tubulin polymerization: the particular case of podophyllotoxin and analogues. Curr Med Chem Anticancer Agents 2, 71-90.
Fiorica, J.V. (2002). Update on the treatment of cervical and uterine carcinoma: focus on topotecan. Oncologist 7 Suppl 5, 36-45.
Garcia, E.S., Cabral, M.M., Schaub, G.A., Gottlieb, O.R., and Azambuja, P. (2000). Effects of lignoids on a hematophagous bug, Rhodnius prolixus: feeding, ecdysis and diuresis. Phytochemistry 55, 611-616.
Gordaliza, M., Castro, M.A., del Corral, J.M., and Feliciano, A.S. (2000). Antitumor properties of podophyllotoxin and related compounds. Curr Pharm Des 6, 1811-1839.
Gordaliza, M., Garcia, P.A., del Corral, J.M., Castro, M.A., and Gomez-Zurita, M.A. (2004). Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44, 441-459.
Hall, A. (1992). Ras-related GTPases and the cytoskeleton. Mol Biol Cell 3, 475-479.
Hanauske, A.R., Wuster, K.C., Lehmer, A., Rotter, M., Schneider, P., Kaeser-Frohlich, A., Rastetter, J., and Depenbrock, H. (1995). Activity of NK 611, a new epipodophyllotoxin derivative, against colony forming units from freshly explanted human tumours in vitro. Eur J Cancer 31A, 1677-1681.
Hande, K.R. (1998). Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34, 1514-1521.
Hartwell, J.L., and Shear, M.J. (1947). Chemotherapy of cancer:classes of compound under investigation and active components of podophyllin. Cancer Res 7, 716-717.
Herzog, T.J. (2003). Clinical experience with topotecan in relapsed ovarian cancer. Gynecol Oncol 90, S3-7.
Huang, T.S., Lee, C.C., Chao, Y., Shu, C.H., Chen, L.T., Chen, L.L., Chen, M.H., Yuan, C.C., and Whang-Peng, J. (1999). A novel podophyllotoxin-derived compound GL331 is more potent than its congener VP-16 in killing refractory cancer cells. Pharm Res 16, 997-1002.
Imbert, T.F. (1998). Discovery of podophyllotoxins. Biochimie 80, 207-222.
Islam, M.N., and Iskander, M.N. (2004). Microtubulin binding sites as target for developing anticancer agents. Mini Rev Med Chem 4, 1077-1104.
Johnson, D.H. (1999). Management of small cell lung cancer: current state of the art. Chest 116, 525S-530S.
Kalpan, I.W. (1942). Condylomata acuminata. New Orleans Med Surg J 94, 388-395.
Kelly, M., and Hartwell, J.L. (1954). The biological effects and the chemical composition of podophyllin: a review. J Natl Cancer Inst 14, 967-1010.
King, S., and Sullivan, M. (1946). The similarity of the effect of podophyllin and colchicine and their use in the treatment of Condylomata Acuminata. Science 104, 244-245.
Lassus, A. (1987). Comparison of podophyllotoxin and podophyllin in treatment of genital warts. Lancet 2, 512-513.
Lee, C.C., and Huang, T.S. (2001). A novel topoisomerase II poison GL331 preferentially induces DNA cleavage at (C/G)T sites and can cause telomere DNA damage. Pharm Res 18, 846-851.
Leteurtre, F., Madalengoitia, J., Orr, A., Guzi, T.J., Lehnert, E., Macdonald, T., and Pommier, Y. (1992). Rational design and molecular effects of a new topoisomerase II inhibitor, azatoxin. Cancer Res 52, 4478-4483.
Li, L.Y., Luo, X., and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99.
Licht, J.D., Mazanet, R., Loehrer, P.J., Gonin, R., and Antman, K.H. (1994). Phase IV trial of daily oral etoposide in the treatment of advanced soft-tissue sarcoma. Cancer Chemother Pharmacol 34, 79-80.
Loike, J.D., and Horwitz, S.B. (1976a). Effect of VP-16-213 on the intracellular degradation of DNA in HeLa cells. Biochemistry 15, 5443-5448.
Loike, J.D., and Horwitz, S.B. (1976b). Effects of podophyllotoxin and VP-16-213 on microtubule assembly in vitro and nucleoside transport in HeLa cells. Biochemistry 15, 5435-5443.
Long, B.H. (1992). Mechanisms of action of teniposide (VM-26) and comparison with etoposide (VP-16). Semin Oncol 19, 3-19.
Long, B.H., Musial, S.T., and Brattain, M.G. (1984). Comparison of cytotoxicity and DNA breakage activity of congeners of podophyllotoxin including VP16-213 and VM26: a quantitative structure-activity relationship. Biochemistry 23, 1183-1188.
Minocha, A., and Long, B.H. (1984). Inhibition of the DNA catenation activity of type II topoisomerase by VP16-213 and VM26. Biochem Biophys Res Commun 122, 165-170.
Miyazawa, M., Fukuyama, M., Yoshio, K., Kato, T., and Ishikawa, Y. (1999). Biologically active components against Drosophila melanogaster from Podophyllum hexandrum. J Agric Food Chem 47, 5108-5110.
Nelson, E.M., Tewey, K.M., and Liu, L.F. (1984). Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4'-(9-acridinylamino)-methanesulfon-m-anisidide. Proc Natl Acad Sci U S A 81, 1361-1365.
Nobes, C., and Hall, A. (1994). Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev 4, 77-81.
Podwyssotzki, V. (1880). Pharmakologische studien uber Podophyllun peltatum. Arch Exp Pathol Pharmakol 13, 29-52.
Podwyssotzki, V. (1881). The active consituent of podophyllin. Pharm J Trans 12, 217-218.
Podwyssotzki, V. (1882). On the active constituents of podophyllin. Am J Pharm 12, 102-115.
Rivera, G., Bowman, W.P., Look, A.T., Evans, W.E., Kalwinsky, D., and Dahl, G.V. (1982a). Single-agent and combination chemotherapy with etoposide in the acute leukemias of childhood. Cancer Treat Rev 9 Suppl, 53-57.
Rivera, G., Dahl, G.V., Murphy, S.B., Bowman, W.P., Aur, R.J., Avery, T.L., and Simone, J.V. (1982b). VM26 therapy in children with drug-refractory lymphocytic leukemia. Cancer Chemother Pharmacol 7, 169-172.
Ross, W., Rowe, T., Glisson, B., Yalowich, J., and Liu, L. (1984). Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res 44, 5857-5860.
Rowe, T., Kupfer, G., and Ross, W. (1985). Inhibition of epipodophyllotoxin cytotoxicity by interference with topoisomerase-mediated DNA cleavage. Biochem Pharmacol 34, 2483-2487.
Sackett, D.L. (1993). Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin. Pharmacol Ther 59, 163-228.
Salles, G., Shipp, M.A., and Coiffier, B. (1994). Chemotherapy of non-Hodgkin's aggressive lymphomas. Semin Hematol 31, 46-69.
Schacter, L. (1996). Etoposide phosphate: what, why, where, and how? Semin Oncol 23, 1-7.
Schonbrunn, E., Phlippen, W., Trinczek, B., Sack, S., Eschenburg, S., Mandelkow, E.M., and Mandelkow, E. (1999). Crystallization of a macromolecular ring assembly of tubulin liganded with the anti-mitotic drug podophyllotoxin. J Struct Biol 128, 211-215.
Schwartsmann, G., Sprinz, E., Kalakun, L., Yamagushi, N., Sander, E., Grivicich, I., Koya, R., and Mans, D.R. (1996). Phase II study of pentosan polysulfate (PPS) in patients with AIDS-related Kaposi's sarcoma. Tumori 82, 360-363.
Sinkule, J.A. (1984). Etoposide: a semisynthetic epipodophyllotoxin. Chemistry, pharmacology, pharmacokinetics, adverse effects and use as an antineoplastic agent. Pharmacotherapy 4, 61-73.
Späth, E., Wessely, F., and Kornfeld, L. (1932a). Über die konstitution von podophyllotoxin und pikro-podophyllin. Chem Ber 65, 1536-1549.
Späth, E., Wessely, F., and Nadler, E. (1932b). Zur koknstitution des podophyllotoxin und picro-podophyllins. Chem Ber 65, 1773-1777.
Sparano, J.A., Wiernik, P.H., Leaf, A., and Dutcher, J.P. (1993). Infusional cyclophosphamide, doxorubicin, and etoposide in relapsed and resistant non-Hodgkin's lymphoma: evidence for a schedule-dependent effect favoring infusional administration of chemotherapy. J Clin Oncol 11, 1071-1079.
Spencer, C.M., and Faulds, D. (1994). Paclitaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48, 794-847.
Srivastava, V., Negi, A.S., Kumar, J.K., Gupta, M.M., and Khanuja, S.P. (2005). Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13, 5892-5908.
Stahelin, H. (1973). Activity of a new glycosidic lignan derivative (VP 16-213) related to podophyllotoxin in experimental tumors. Eur J Cancer 9, 215-221.
Stahelin, H., and von Wartburg, A. (1989). From podophyllotoxin glucoside to etoposide. Prog Drug Res 33, 169-266.
Stahelin, H.F., and von Wartburg, A. (1991). The chemical and biological route from podophyllotoxin glucoside to etoposide: ninth Cain memorial Award lecture. Cancer Res 51, 5-15.
Sullivan, B.J., and Wechsler, H.I. (1947). The cytological effects of podophyllin Science 105, 433.
Tapon, N., and Hall, A. (1997). Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9, 86-92.
Tewey, K.M., Chen, G.L., Nelson, E.M., and Liu, L.F. (1984). Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 259, 9182-9187.
Thurston, L.S., Irie, H., Tani, S., Han, F.S., Liu, Z.C., Cheng, Y.C., and Lee, K.H. (1986). Antitumor agents. 78. Inhibition of human DNA topoisomerase II by podophyllotoxin and alpha-peltatin analogues. J Med Chem 29, 1547-1550.
Trump, D.L., and Loprinzi, C.L. (1984). Phase II trial of etoposide in advanced prostate cancer. Cancer Treat Rep 68, 1195-1196.
Tseng, C.J., Wang, Y.J., Liang, Y.C., Jeng, J.H., Lee, W.S., Lin, J.K., Chen, C.H., Liu, I.C., and Ho, Y.S. (2002). Microtubule damaging agents induce apoptosis in HL 60 cells and G2/M cell cycle arrest in HT 29 cells. Toxicology 175, 123-142.
Utsugi, T., Shibata, J., Sugimoto, Y., Aoyagi, K., Wierzba, K., Kobunai, T., Terada, T., Oh-hara, T., Tsuruo, T., and Yamada, Y. (1996). Antitumor activity of a novel podophyllotoxin derivative (TOP-53) against lung cancer and lung metastatic cancer. Cancer Res 56, 2809-2814.
van Maanen, J.M., Retel, J., de Vries, J., and Pinedo, H.M. (1988). Mechanism of action of antitumor drug etoposide: a review. J Natl Cancer Inst 80, 1526-1533.
Vermeulen, K., Van Bockstaele, D.R., and Berneman, Z.N. (2005). Apoptosis: mechanisms and relevance in cancer. Ann Hematol 84, 627-639.
Vogelzang, N.J., Raghavan, D., and Kennedy, B.J. (1982). VP-16-213 (etoposide): the mandrake root from Issyk-Kul. Am J Med 72, 136-144.
Wall, M.E. (1998). Camptothecin and taxol: discovery to clinic. Med Res Rev 18, 299-314.
Worth, L.L., Jaffe, N., Benjamin, R.S., Papadopoulos, N.E., Patel, S., Raymond, A.K., Jia, S.F., Rodriguez, C., Gano, J., Gianan, M.A., et al. (1997). Phase II study of recombinant interleukin 1alpha and etoposide in patients with relapsed osteosarcoma. Clin Cancer Res 3, 1721-1729.
Yamazaki, D., Kurisu, S., and Takenawa, T. (2005). Regulation of cancer cell motility through actin reorganization. Cancer Sci 96, 379-386.
Yang, L., Rowe, T.C., and Liu, L.F. (1985). Identification of DNA topoisomerase II as an intracellular target of antitumor epipodophyllotoxins in simian virus 40-infected monkey cells. Cancer Res 45, 5872-5876.
You, Y. (2005). Podophyllotoxin derivatives: current synthetic approaches for new anticancer agents. Curr Pharm Des 11, 1695-1717.