簡易檢索 / 詳目顯示

研究生: 林培棠
Pai-Tang Lin
論文名稱: 兩位資深高中數學教師專門內容知識之嵌入式設計的混合方法研究
The embedded design of mixed-methods research on two experienced senior high school mathematics teachers' specialized content knowledge
指導教授: 金鈐
Chin, Chien
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 305
中文關鍵詞: 質性研究個案研究混合方法研究MQIMKTSCK
英文關鍵詞: Qualitative study, Case study, Mixed-methods research, MQI, MKT, SCK
論文種類: 學術論文
相關次數: 點閱:180下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合質性取向的個案研究與錄影分析的量化數據,形成一個嵌入式設計的混合研究(embedded design of mixed-methods research),用以探究兩位資深高中數學教師(林師與吳師)專門內容知識(specialized content knowledge)可能的內涵與特質以及它與內容與教學的知識(knowledge of content and teaching,簡稱 KCT)、內容與學生的知識(knowledge of content and student ,簡稱 KCS)間的關係。在為期一年的研究中,作者進入兩位個案教師的教學現場,透過課堂教學觀察與訪談,探索兩位個案教師和學生之間的互動與SCK呈現的情形。在錄影分析系統的部分,則是引用Learning Mathematics to Teaching (2006)所發展的Mathematical Quality of Instruction (MQI)登錄系統。個人首先修改系統的編碼,以符合兩位個案教師實際的數學教學特質,接著,進行教學影片分析,最後,商請另一位獨立登錄者協助信度的檢測。依據蒐集準則的質性與量化資料,並借助Ball, Thames與Phelps (2008)的MKT架構,本文描述兩位資深高中數學教師SCK可能樣貌以及它與KCT、KCS間的關係。
    本研究結果顯示,兩位個案教師除了具有MKT原始定義的SCK特性外,也顯現其他SCK的內涵與特質,例如含有近似於HCK的特徵。其次,某些事件中教學的「不確定性(uncertainties)」會喚起林師即興的(improvisational)SCK,它的顯現與林師具有的數學知識相關,也反應了這些教學事件「不確定性」的程度。此外,兩位個案教師的SCK也會影響其教學的安排與教學的評價(亦即KCT),是影響他們教學決策的原因之一,而KCS也會影響兩位個案教師SCK呈現的方式與時機。
    最後,根據研究結果,本文指出即興SCK與「不確定性」的關係,可以作為未來進一步探究高中數學教學中的「不確定性」。希望,本研究的結果可以用來幫助在職高中數學教師,進一步了解自己在教學中所需數學知識的內涵與影響的因素,以發展高中數學教師的SCK。

    This study combines qualitative case study data with quantitative video analysis as an embedded design of mixed-methods research to explore two experienced senior high school mathematics teachers’ specialized content knowledge (SCK). Using systematic classroom observations and the follow-up interviews, this research explores the explicit and implicit aspects of the SCK that the two teacher cases reveal. For encoding the videos, I used Mathematical Quality of Instruction (MQI) developed by Learning Mathematics to Teaching (2006). First, I modified the MQI coding system to adapt to the classroom teaching of two cases. Second, I analyzed the video tapes by using the adapted codes. Last, the coding results were mostly supported from another independent coder to establish acceptable inter-coder reliability. The study results properly describe two teacher cases’ SCK as well as its relationship with their KCT and KCS.
    The results also show that the two teachers not only have the characteristics of SCK of the original definition in MKT study, but also show other SCK types, for example it also embodied some characteristics similar to HCK. Moreover, "uncertainties” in teaching will evoke some improvisational aspects of SCK. In addition, the two teachers’ SCK clearly affected the arrangement of their teaching and evaluation of teaching (i.e. KCT). KCS also affected the manner and timing of their SCK.
    As a whole, the research results of the present study clearly point out the inherent relationship between the "uncertainties" of classroom teaching and the improvisational aspects of SCK. It is assumed that the results of this study might be used to help in-service high school mathematics teachers to understand more about the required mathematical knowledge in teaching and to develop their own SCK.

    目次......................................................I 附錄目次……………………………………………………………III 圖目次……………………………………………………………………V 表目次……………………………………………………………………VII 第一章 緒論…………………………………………………………1 第一節 研究背景與動機……………………………………………………………..1 第二節 研究問題與目的……………………………………………………………..6 第二章 文獻探討………………………………………………………..7 第一節 數學教師的專業……………………………………………………………..7 第二節 數學教師的教學相關知識…………………………………………………..9 第三章 研究方法………………………………………………………29 第一節 研究的參與者和場域………………………………………………………29 第二節 嵌入式設計的混合方法研究………………………………………………32 第三節 研究設計……………………………………………………………………44 第四節 研究限制……………………………………………………………………77 第四章 研究結果………………………………………………………81 第一節 林師前導階段的研究結果…………………………………………………81 第二節 林師第一階段的研究結果………………………………………………..112 第三節 林師第二階段的研究結果………………………………………………..130 第四節 吳師三階段的研究結果…………………………………………………..153 第五節 兩個案的整理與對照……………………………………………………..177 第五章 討論與建議…………………………………………………..184 第一節 林師與吳師SCK的討論…………………………………………………184 第二節 接續研究的建議…………………………………………………………..192 附註……………………………………………………………………195 參考文獻………………………………………………………………197 附錄目次 附錄一:教學影片與訪談轉譯稿……………………………………204 附錄一(1):林師2010年10月13日教學影片轉譯…………….…….…………....204 附錄一(2):林師2011年02月19日教學影片轉譯……………….….……………214 附錄一(3):林師2011年05月25日教學影片轉譯…………………..……………224 附錄一(4):吳師2011年02月14日教學影片轉譯………………….….…………236 附錄一(5):林師2011年01月28日前導階段總結性訪談轉譯……….….………245 附錄一(6):林師2011年09月02日第一階段總結性訪談轉譯………….….……248 附錄一(7):林師2011年09月19日第二階段總結性訪談轉譯………….….……251 附錄一(8):吳師2011年08月04日前導階段總結性訪談轉譯………….….……255 附錄二:錄影分析系統資料…………………………………………..260 附錄二(1):LMT(2006)的MQI系統…………………………………….…..…......260 附錄二(2):本研究的錄影分析系統與MQI系統的比較…………….……..……268 附錄二(3):錄影分析系統登錄單………………………..…………….…..………272 附錄二(4):錄影分析系統登錄單劃記範例……………..…………….…..………275 附錄二(5):林師前導階段登錄結果總表……………..……………….…..………278 附錄二(6):林師第一階段登錄結果總表……………..……………….…..………281 附錄二(7):林師第二階段登錄結果總表……………..……………….…..………284 附錄二(8):吳師前導階段登錄結果總表……………..……………….…..………287 附錄二(9):吳師第一階段登錄結果總表……………..……………….…..………290 附錄二(10):吳師第二階段登錄結果總表……………..………….….…..………293 附錄三:相關參考資料影本…………………………………………..296 附錄三(1):Lagrange插值多項式的引入(康熹文化)…………………..…..…......296 附錄三(2):Lagrange插值多項式的引入(龍騰文化)…………………..…..…......299 附錄三(3):Lagrange插值多項式的引入(南一書局)…………………..…..…......301 附錄三(4):後退的數學歸納法(徐道寧,1980)………………………..…..…......304 圖目次 圖2.1:發展於脈絡的教師知識(引自 Fennema & Franke, 1992, p. 162)……..…..14 圖2.2:對主題概念性理解模式(引自 Ma,1999, p. 25)……………………………16 圖2.3:MKT領域架構圖(引自Ball等人, 2008, p. 403)…………………..……….20 圖2.4:數學目標中MKT的呈現(引自Sleep, 2009, p. 222)………………………25 圖3.1:錄影資訊的編碼循環模型(引自Jacobs et al. ,1999, p. 719)……….……...43 圖3.2:挑選操作物以表徵數學想法……………………….……………………….61 圖3.3:挑選模型以表徵數學想法………………………………………………….62 圖3.4:多重模型……………………………………………..………………………62 圖3.5:圖像、符號間的連結…………………………………………………………63 圖3.6:河內塔(一)………………………………………………………………..….67 圖3.7:河內塔(二)………………………………………………………………..….67 圖4.1:Lagrange插值多項式的起始例………..…….………………………………87 圖4.2:Lagrange插值多項式的講解……………..….………………………………88 圖4.3:Lagrange插值多項式的展現………………………………………………...89 圖4.4:中國剩餘定理與「連環套」的連接……………………………………..…90 圖4.5:唯一性的說明……………………………………….……………………….91 圖4.6:用手比擬係數多項式…………………………………………………….…97 圖4.7:特殊書寫模型……………………………………………………………....109 圖4.8:數學歸納法,實驗與觀察…………………………………….…………..115 圖4.9:數學歸納法,歸納………………………………………………………..115 圖4.10:使用表格觀察數的大小…………………………………………………..119 圖4.11:用圖形表示增長速度的模糊…………………………………………….119 圖4.12:介紹分割原理與樹狀圖…………………………………………………..132 圖4.13:「挑選模型或操作物以表徵數學想法」、「在符號、具體圖像、圖表等物之間做連結」與「多重模型」一起顯現…………….………………….…136 圖4.14:林師推估比率的板書…………………………..……………………..…137 圖4.15:林師的解法(一)……………………………………………………………140 圖4.16:林師的解法(二)…………………………………………………………..141 圖4.17:矩陣乘法的引入……………………………………………………….….161 圖4.18:利用向量內積表示矩陣…………………………………………………..162 圖4.19:高斯消去法與增廣矩陣……………………………………….………….163 圖4.20:吳師使用的矩陣符號………………………………………….…………166 圖4.21:吳師「為數學想法挑選數字、實例或者脈絡」………….………..…..168 圖4.22:樹狀圖的表徵與條件機率乘法原理的連接………………………….....169 圖4.23:使用表格連接矩陣……………………………………………………….170 圖4.24:三階反方陣的公式解(一)………………………………………………..171 圖4.25:三階反方陣的公式解(二)………………………………………………..172 圖4.26:三階反方陣的公式解(三)………………………………………………..172 圖5.1:林師不確定性與SCK關係圖…………………………………………..….189 圖5.2:吳師不確定性與SCK關係圖………………………………………...…..190 表目次 表2.1:數學教學的任務 (引自 Ball等人,2008, p. 400)………………..……….22 表3.1:混合方法設計的類型(修改自Creswell & Clark, 2007, p. 82)….……..…..35 表3.2:資料項目的代碼……………………………………………………….……51 表3.3:(C_1,20101015,前)課堂登錄結果的一部份……………….……………….55 表3.4:i×i 項 Kappa統計表………………………………………………………71 表3.5:教學活動kappa統計表(引自(A_1,20101015) 課堂登錄的結果)………….73 表3.6:林師「教學的內容與安排」各類別的K值………………………………74 表3.7:吳師「教學的內容與安排」各類別的K值………………………………74 表3.8:吳師「數學解釋」K值(引自( C_1,20110525)課堂登錄的結果)…….……..75 表3.9:林師「教學活動中數學領域的知識」各類別的K值……………………75 表3.10:吳師「教學活動中數學領域的知識」各類別的K值…………………..76 表3.11:林師「偕同學生的數學使用」的K值結果……………………………..77 表3.12:吳師「偕同學生的數學使用」的K值結果……………………………..77 表4.1:林師前導階段「教學活動」編碼統計表……………………………………..82 表4.2:林師前導階段「教學活動中數學領域知識」編碼統計表……………….93 表4.3:林師前導階段「偕同學生的數學使用」編碼統計表…………………….94 表4.4:林師前導階段闡述數學的方式統計表……...…………………………….100 表4.5:林師前導階段引發學生回應中教師回應的分布…………………………106 表4.6:林師前導階段SCK的樣貌……………………………………………….112 表4.7:林師第一階段「教學活動」編碼統計表………………….………………113 表4.8:林師第一階段「教學活動中數學領域知識」編碼統計表………………116 表4.9:林師第一階段「偕同學生的數學使用」編碼統計表……………………117 表4.10:林師前導階段與第一階段出現的SCK樣貌…………………………..130 表4.11:林師第二階段「教學活動」編碼統計表…………….…………….131 表4.12:林師第二階段「教學活動中數學領域的知識」編碼統計表…………135 表4.13:林師第二階段「偕同學生的數學使用」編碼統計表…………………135 表4.14:林師三階段「教學活動」編碼統計表…………………………………..146 表4.15:林師三階段「教學活動中數學領域知識」編碼統計表………………..147 表4.16:林師三階段「偕同學的數學使用」編碼統計表………………………….147 表4.17:林師三階段闡述數學的方式…………………………………………….149 表4.18:林師三階段「支線」中教師回應的比例分配………………………….152 表4.19:林師三階段SCK的樣貌…………………………………………………153 表4.20:吳師三階段「教學活動」編碼統計表…………………………………..154 表4.21:吳師三階段「教學活動中數學領域知識」編碼統計表……………….165 表4.22:吳師三階段「偕同學生的數學使用」編碼統計表…………………….165 表4.23:吳師三階段闡述數學的方式……………………………………………..167 表4.24:吳師三階段SCK的樣貌………………………………………………….177 表4.25:兩個案SCK的整理………………………………………..…………….178 表4.26:「不確定性」相關編碼的比較……………………………..……………..180 表4.27:林師與吳師「闡述數學的方式」的比較…………………………….…181

    一、中文部分

    中國教育學會與中華民國師範教育學會(2004)。教師專業成長問題研究:理念、問題與革新。臺北市 : 學富文化。
    中華民國師範教育學會(2005)。各師資類科教師專業表現之標準訂定計畫。台北市:教育部。
    何福田和羅瑞玉(民81)。教育改革與教師專業化。載於中華民國師範教育學會主編,教育專業(1-30頁)。台北市:師大書苑
    吳心楷、宋曜廷、簡馨瑩(2010)。錄影分析在教育研究的應用。教育科學研究期刊,55(4),1-37。
    宋曜廷和潘佩妤(2010)。混合方法研究在教育研究的應用。教育科學研究期刊,55(4),97-130。
    范良火(2003)。教師教學知識發展研究。上海市:華東師範大學出版社。
    查孟華(譯)(1980)。數學歸納法(原作者:徐道寧)。台北市:凡異出版社
    教育部國語推行委員會(民1996)。重編國語辭典修訂本【網路版】。查詢日期:100年12月15日,檢自http://dict.revised.moe.edu.tw/
    教育部(2000)。高級中等以下學校及幼稚園教師分級及審定辦法(草案)。
      台北市:教育部
    陳美玉(1997)。教師專業學習與發展。台北市:師大書苑。
    陳亭瑋(2011)。資深高中數學教師教學相關知識的個案研究。國立臺灣師範大學碩士論文,台北市。
    曾名秀(2011)。資深高中數學教師教學知識與構思的個案研究。國立臺灣師範大學碩士論文,台北市。
    饒見維(2003)。教師專業發展理論與實務。台北市:五南出版社。
    Creswell, J. W. & Clark, V. L. (2007)。混合方法研究導論(謝志偉、王慧玉譯)。台北市:心理出版社(2010)。
    Bogdan, R. C.,&Biklen, S. K. (2001)。質性教育研究理論與方法(黃光雄主譯)。嘉義市︰濤石文化。(1998)
    Irving S. (2009)。訪談研究法(李政賢譯)。台北市:五南。(2006)
    Robert, K. Y. (2001)。個案研究法(尚榮安譯)。台北市︰弘智文化(1994)
    Strauss, A.,&Corbin, J. (2001)。紮根理論研究方法(吳芝儀、廖梅花譯)。嘉義市︰濤石文化。(1998)

    二、英文部分

    Ainley, J., & Luntley, M. (2007). The role of attention in expert classroom practice. Journal Mathematics Teacher Education, 10(1), 3-22.
    Argyris, C., & Schon, D. (1974). Theory in practice: Increasing professional effectiveness. London: Jossey-Bass.
    A.M. Carr-Saunders. (1933). The Profession, Oxford:Clarendon Press.
    Ball, D. L. (1996). Teacher learning and the mathematics reforms: What do we think we know and what do we need to learn? Phi Delta Kappan, 77(7), 500-508.
    Ball, D. L. (1989). Teaching mathematics for understanding: What do teachers need to know about the subject matter. National Center for Research on Teacher Education. East Lansing.
    Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on the teaching and learning of mathematics (pp. 83-104). London :Ablex Publishing
    Ball, D. L., & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for teaching to learners’ mathematical future. Paper presented on a keynote address at the 43rd Jahrestagung für Didaktik der Mathematik held in Oldenburg, Germany, March 1-4, 2009.
    Ball, D. L., Charalambous, C.Y., Thames, M., & Lewis, J.M. (2009). Teacher knowledge and teaching: Viewing a complex relationship from three perspectives. In Tzekaki, M., Kaldrimidou, M., & Sakonidis, H. (Eds.), Proceedings of the 33rd Conference of the International Group for the psychology of Mathematics Education (PME 33), Vol. 1 (pp.121-125). Thessaloniki, Greece.
    Ball, D. L. & Cohen, D. K. (1999). Developing practice, developing practitioners:Toward a practice-based theory of professional education. In G. Sykes and L. Darling-Hammond (Eds.), Teaching as the learning profession: Handbook of policy and practice (pp. 3-32). San Francisco: Jossey Bass.
    Ball, D. L. & Lampert, M. (1999) Multiples of evidence, time, and perspective: Revising the study of teaching and learning. In E. Lagemann & L. S. Shulman, Issues in education research: Problems and possibilities (pp. 371 - 398). San Francisco: Jossey Bass.
    Ball, D. L., Lubienski, S., & Mewborn, D. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of research on teaching (4th ed.). New York: Macmillan.
    Ball, D. L., & Rowan, B. (2004). Introduction: Measuring instruction. The Elementary School Journal, 105(1), 3-10.
    Ball, D. L., Thames, M.H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407.
    Bishop, A., Seah, W.T., & Chin, C. (2003). Second International Handbook of Mathematics Education, 717-765.Great Britain:Kluwer Academic.
    Blackman, C. A. (1989). Issue in development:The continuing agenda.In M.L. Holly & C.S. McLoughlin(Eds.) (1989). Perspectives on the teacher professional development. New York:The Falmer Press.
    Brown, J. S., Collins, A., &Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42.
    Cambridge University (2011). Cambridge dictionaries online. Retrieved March 28, 2012 from http://dictionary.cambridge.org/
    Charalambous, Y. C. (2008). Preservice teachers' mathematical knowledge for teaching and their performance in selected teaching practices: Exploring a complex relationship. Unpublished doctoral dissertation, State University of Michigan, East Lansing, MI.
    Collier, J., & Collier, M. (1986). Visual anthropology: Photography as a Research method. New Mexico, NM: University of New Mexico Press.
    Derry, S. J. (2007). Guidelines for conducting video research in education: Recommendations from an expert panel. Chicago, IL: Data Research and Development Center.
    Etzioni, A. (Ed.). (1969). The semi-professions and their organization: Teachers,nurses, social workers. New York: Free Press.
    Fennema, E., & Franke, M. L. (1992). Teachers’ knowledge and its impact. In D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics. (pp. 147-164). New York: Macmillan.
    Frick, T., &Semmel, M. I. (1978). Observer agreement and reliabilities of classroom observational measures. Review of Educational Research, 48(1), 157-184.
    Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372-400.
    Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C.,Sleep, L., &Ball, D. L.(2008).Mathematical knowledge for teaching and the mathematical quality of instruction: an exploratory study. Taylor & Francies Group, 26, 430-511.
    Jacobs, J. K., Kawanaka, T., & Stigler, J. W. (1999). Integrating qualitative and quantitative approaches to the analysis of video data on classroom teaching. International Journal of Educational Research, 31(8), 717-724.
    Learning Mathematics for Teaching (LMT) Project, Learning Mathematics for Teaching (LMT) Project. Retrieved October 20, 2009 from http://sitemaker.umich.edu/lmt/faq_about_video_codes
    Leinhardt, G., & Smith, D. A. (1985). Expertise in mathematics instruction:Subject matter knowledge. Journal of Educational Psychology, 77(3), 247-271.
    Leinhardt, G. (1989). Math lessons: A contrast of novice and expert competence. Journal for Research in Mathematics Education, 20(1), 52-75.
    Ma, L. (1999). Knowing and teaching elementary mathematics. New Jersey:Lawrence Erlbaum Associates.
    Marks, R. (1990). Pedagogical content knowledge: From a mathematical case to a modified conception. Journal of Teacher Education, 41, 3–11.
    Noddings, N. (1992). Professionalization and mathematics teaching. In D.A.Grovws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 197-208). New York: Macmillan.
    Prosser, J. (Ed.). (1998). Image-based research: A sourcebook for qualitative researchers. Bristol, UK: Falmer Press.
    Sahin & Kulm (2008). Sixth grade mathematics teachers’ intentions and use of probing, guiding, and factual questions. Journal of Mathematics Teacher Education, 11(3), 221-241.
    Schwab, J.J. (1978). Science, curriculum and liberal education: Selected essays,Joseph J. Schwab (Edited by I. Westbury and N.J. Wilkof). Chicago: The University of Chicago Press.
    Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15 (2), 4-14.
    Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57 (1), 1-22.
    Sleep, L. (2009). Teaching to the Mathematical Point: Knowing and Using Mathematics in Teaching. Unpublished doctoral dissertation, State University of Michigan, East Lansing, MI.
    Stevens, R., & Toro-Martell, S. (2003). Leaving a trace: Supporting museum visitor interaction and interpretation with digital media annotation systems. Journal of Museum Education, 28(2),25-31.
    Sykes, G. (1986). The social consequences of standard-setting in the professions. Paper prepared for the Task Force on Teaching as a Professions, Carnegie Forum on Education and the Economy.
    Tashakkori, A., & Teddlie, C. (2003). Handbook of mixed methods in social and behavioral research.Thousand Oaks, CA: Sage.
    Teddlie, C., & Tashakkori, A. (2009). Foundations of mixed methods research.Los Angeles, CA:Sage.
    Yackel, E., & Cobb, P. (1996). Social mathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477.
    Znaniecki, F. (1965). The social role of the man of knowledge. New York: Octagon.

    下載圖示
    QR CODE