研究生: |
楊孟晨 Yang, Meng-Chen |
---|---|
論文名稱: |
基於最佳化分數階模糊PID控制之X-Y音圈馬達定位平台 Optimal Fractional-Order PID Control for a VCMs-based X-Y Motion Stage |
指導教授: |
陳瑄易
Chen, Syuan-Yi |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 布穀鳥演算法 、分數階微積分 、PID控制器 、模糊理論 、音圈馬達 、數位訊號處理器 |
英文關鍵詞: | Cuckoo Search Algorithm, Fractional Order, Proportional-Integral-Derivative control, Fuzzy, Voice Coil Motor, Digital Signal Processor |
DOI URL: | http://doi.org/10.6345/NTNU201901064 |
論文種類: | 學術論文 |
相關次數: | 點閱:254 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目標是研究一種最佳化的分數階比例-積分-微分(PID)控制策略,用來控制於X-Y音圈馬達定位平台。首先介紹音圈馬達平台之系統架構和運作原理,以系統鑑別的方式推導出馬達數學模型中的系統參數。接著,基於分數階微積分設計一個分數階PID控制,透過控制系統參數額外自由度,分數階PID可改善傳統的PID控制響應和穩健性,為了增加系統的控制平滑度,本論文以模糊理論提出了分數階模糊PID控制,可解決傳統分數階PID的抖動現象,調整這些額外的分數運算也增加控制系統設計的複雜性,因此,本論文進一步提出了最佳化分數階模糊PID控制器,其中五個參數包括比例增益、積分增益、微分增益、分數階積分和分數階微分,均利用自適應布穀鳥搜索算法調整。在自適應布穀鳥中,本論文再提出以動態調整步長及發現率來增加全域和局部的搜尋能力,並以音圈馬達追隨過程中X軸和Y軸的最小誤差的絕對值作為布穀鳥演算之適應函數。本論文以數位訊號處理器(TMS320F28377xD)實現上述控制策略,並且比較兩種追蹤軌跡和兩種測試模式,最後由實驗結果驗證所設計的控制器確實能有效的控制音圈馬達定位平台。
The object of this study is to develop an optimal fractional-order proportional-integral-derivative (OFOPID) control strategy for controlling the mover position of a voice coil motor (VCM)-based x-y motion stage. First, the operating principle and dynamics of the VCM-based x-y motion stage are described. Then, a design of the fractional-order proportional-integral-derivative (FOPID) control is introduced on the basis of the fractional calculus. With the additional degree of freedom to the control system parameters, the FOPID control can improve the control responses and robustness of the conventional proportional-integral-derivative (PID) control. In order to improve the robustness of the system, a fuzzy fractional-order PD control is proposed based on fuzzy theory, which can solve jitter phenomenon of the traditional fractional-order PID. However, tuning these extra fractional operators increases the complexity of the control system design. In this regard, the FOPID controller is further proposed in which five interdependent control parameters including proportional gain, integral gain, derivative gain, fractional operator of integral, and fractional operator of derivative are all online optimally determined via an adaptive cuckoo search algorithm (ACSA). In the ACSA, the step size and discovery probability are dynamically adjusted to regulate the abilities of global and local searches. The summation of integral absolute errors in x and y axes of the VCM-based x-y motion stage during tracking process is chosen as a performance index for minimization. In this study, all of the control strategy were implemented via the digital signal processor (DSP). In addition, two reference trajectories and three control modes were provided to evaluate the control performances of different control systems. the experimental results can be verified that the designed controller can effectively control the voice coil motor positioning platform.
[1] S. Wu, Z. Jiao, L. Yan, R. Zhang, J. Yu, and C. Y. Chen, “Development of a Direct-Drive Servo Valve With High-Frequency Voice Coil Motor and Advanced Digital Controller,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 3, pp. 932-942, Jun. 2014.
[2] 陳尊義,呂宗熙,為了抑制光碟機振動之音圈馬達出力控制。國立交通大學機械工程系, 2006
[3] C. E. Kim, Y. R. Kim, “Design and analysis of linear voice coil mortor for automatic transmission” in International Conference on Electrical Machines and Systems(ICEMS), Feb.13-16, 2012
[4] H. C. Yu, T.Y. Lee, S. J. Wang, M. L. Lai, J. J. Ju, D. R. Huang, and S. K. Lin “Design of a voice coil motor used in the focusing system of a digital video camera,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3979-3981, Oct. 2005.
[5] K. J. Smith, D. J. Graham, and J. A. Neasham, “Design and optimization of a voice coil motor with a rotary actuator for an ultrasound scanner,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp.7073-7078, Nov. 2015.
[6] 范光照,劉一正,朱志良,音圈馬達於主動振動隔振器之應用,台灣大學機械工程研究所,南台科技大學機械系,第十四屆中華民國振動與噪音工程學術研討會 宜蘭
[7] H. C. Yu, T. C. Chen, and C. S. Liu, “Adaptive fuzzy logic proportional-integral-derivative control for a miniature autofocus voice coil motor actuator with retaining force,” IEEE Transactions on Magnetics, vol. 50, no. 11, Nov. 2014.
[8] 鄧偉華:分數階微分方程的理論分析與數值計算,上海大學博士論文,2007
[9] C. Zhao, D. Xue, and Y. Q. Chen, “A fractional order PID tuning algorithm for a class of fractional order plants,” IEEE International Conference Mechatronics and Automation, Aug. 2005
[10] J. Huang, H. S. Li, F. Teng, and D. Liu, “Fractional order sliding mode controller for the speed control of a permanent magnet synchronous motor,” in 2012 24th Chinese Control and Decision Conference (CCDC), pp. 1203-1208, 2012.
[11] C. Yin, Y. Q. Chen, and S. M. Zhong, “Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems,” Automatica, vol. 50, no. 12, PP. 3173-3181, Dec. 2014.
[12] B. T. Zhang, Y. G. Pi, and Y. Luo, “Fractional-order sliding mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor,” ISA Transactions, vol. 51, no. 5, pp. 649-656, Sep. 2012.
[13] 曹軍義,曹炳剛,分數階控制器離散方法的評估策略研究,西安交通大學學報,2007
[14] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, Jun. 1965.
[15] https//wiki.mbalib.com/zhtw/%E6%A8%A1%E7%B3%8A%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA
[16] S. Das, I. Pan, S. Das, A. Gupta, “A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices,” Engineering Applications of Artificial Intelligence, vol. 25, no. 2, pp.430-442, Mar. 2012.
[17] R. Sharma, K. P. S. Rana, and V. Kumar, “Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator,” Expert Systems with Applications, vol. 41, no. 9, pp.4274-4289, Jul. 2014.
[18] Y. H. Xu, J. Z. Zhou, X. M. Xue, W. L. Fu, W. L. Zhu, and C. S. Li, “An adaptively fast fuzzy fractional order PID control for pumped storage hydro unit using improved gravitational search algorithm,” Energy Conversion and Management, vol.111, no. 1, pp. 67-78, Mar. 2016.
[19] L. Liu, F. Pan, and D. Xue, “Variable order fuzzy fractional PID controller,” ISA Transactions, vol. 55, pp.227-233, Mar. 2015.
[20] X. S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in World Congress on Nature & Biologically Inspired Computing, pp. 210-214, 9-11.Dec. 2009
[21] G. M. Viswanathan, F. Bartumeus, S. V. Buldyrev, J. Catalan, U. J. Fulco, S. Havlin, M. G. E. Luz, M. L. Lyra, E. P. Raposo, and H. E. Stanley, “Lévy flight random searches in biological phenomena,’’ Physica A:Statistical Mechanics and its Applications, vol. 314, no. 1-4, pp. 208-213, Nov. 2002.
[22] I. Durgun and A. R. Yildiz, “Structural Design Optimization of Vehicle Components Using Cuckoo Search Algorithm,” Materials Testing, vol.54, no. 3, Mar. 2012.
[23] A. R. Yildiz, “Cuckoo search algorithm for the selection of optimal machining parameters in milling operations,” The International Journal of Advanced Manufacturing Technology, vol. 64, no. 1-4, pp.55-61, Jan. 2013.
[24] M. K. Marichelvam, T. Prabaharan, and X. S. Yang, “Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan,” Applied Soft Computing, vol. 19, pp, 93-101, Jun. 2014.
[25] Q. Jin, L. Qi, B. Jiang “Novel improved cuckoo search for PID controller design” Transactions of the Institute of Measurement and Control. Vol. 37, no.6, Aug. 2015
[26] M. Kishnani, S. Pareek, and R. Gupta, “Optimal Tuning of PID controller by Cuckoo Search via Levy flight,” International Conference on Advances in Engineering & Technology Research (ICAETR), pp.2347-9337, Aug. 2014
[27] Y. W. Zhang, L. Wang, Q. D. Wu “Dynamic adaptation cuckoo search algorithm,” Control and Decision, vol. 29, no. 4, pp.617-622, Apr. 2014
[28] L. Yi, Y. Liu, W. Yu, G. Wang, and Y. Sui, “Adaptive Cuckoo Search Algorithm for the Speed Control System of Induction Motor,” SCIREA Journal of Electrical Engineering, vol. 2, no. 1, Feb. 2017.
[29] 呂思賢,改良行動態適應布穀鳥搜尋演算,義守大學資訊管理研究所
[30] G. Herrmann, S. S. Ge, and G. Guoxiao, “Practical implementation of a neural network controller in a hard disk drive,” IEEE Trans. on Control Systems Technology, vol. 13, no. 1, pp. 146-154, Jan. 2005.
[31] http://www.xuzhi.net/d50/13475559.html
[32] https://sites.google.com/site/87yuan881/ci-fu-ma-da/wu-shua-shi/yuan-li
[33] 李承諺,以數位訊號處理器實現之智慧型音圈馬達定位控制系統,國立台灣師範大學電機工程學系,2016
[34] 周柏寰,智慧型同動控制之龍門式定位平台,博士論文,國立東華大學電機工程學系,2016
[35] 馬唯科技有限公司,easyDSP-F28377xDAQ參考使用手冊,台北,201
[36] http://aecl.ee.nchu.edu.tw/drupal/AECL/course/105_2/Control_Lab/Slide/Lec03.pdf
[37] Emlo motion control, http://www.elmomc.com/
[38] K. Diethelm, “The Analysis of Fractional Differential Equations – An Application-Oriented Exposition Using Differential Operators of Caputo Type,” Springer, 2010.
[39] I. Podlubny, “Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications,” Mathematics in Science and Engineering, Vol. 198, 1999.
[40] 郭柏靈,蒲學科,黄鳳輝,分數階篇微分方程及其數值解,科學出版社,2011。
[41] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, V. F. Batlle “Fractional-order systems and controls: fundamentals and applications,” Springer, 2010
[42] Back T. Evolutionary algorithms in theory and practice:Evolution strategies, evolutionary programming, geneticalgorithms[M]. Oxford: Oxford University Press, pp. 161-164, 1996
[43] F. J. Lin, P. H. Shieh, and P. H. Shen, “Robust recurrent-neural-network sliding-mode control for the X-Y table of a CNC machine,” IEE Proceedings-Control Theory and Applications, vol. 153, no. 1, pp. 111-123, Jan. 2006.