簡易檢索 / 詳目顯示

研究生: 蘇雅雯
YaWen Su
論文名稱: 二維硒化鎘奈米柱狀晶體矩陣的製作
Fabrication of 2D arrays of Cadmium Selenide nano-pillars for optics applications
指導教授: 陳家俊
Chen, Chia-Chun
陳啟東
Chen, Chii-Dong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 55
中文關鍵詞: 硒化鎘柱狀
英文關鍵詞: Cadmium Selenide, CdSe, array
論文種類: 學術論文
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用電子束微影製程技術配合化學電鍍沈積的方式製作出整齊而又有週期性排列,具有介電材料的半導體晶體二維硒化鎘柱狀構。首先利用電子束曝光、顯影等步驟,在覆蓋電子阻劑的ITO透明導電玻璃上,定義出數十個平方微米區域,接著在這些區域中電鍍上Ⅱ-Ⅵ族的半導體-硒化鎘,最後再用丙酮將電子阻劑洗去,製作出週期性排列又規則整齊的二維硒化鎘柱狀晶體結構。
    以電鍍溶液: 1 M CdSO4(aq) ,0.3 mM SeO2(aq) , 18 M H2SO4 ,H2O(18 Mohm),循環電壓儀(cyclic voltammetry)進行電鍍反應,參考電極電壓介於 – 400 mV ~ -800mV 之間,掃瞄速率(Scan rate) 750mV/s ,在此電化學反應條件下,可有效的控制硒化鎘柱狀結構的成長速率:電鍍第一圈之後,每圈以平均的 38.8 nm的成長高度,形成了成長高度線性的關係。實驗中我們做到的硒化鎘柱狀結構最小直徑為80nm,所做出的柱狀結構高度最高為640nm,相當於電子阻劑的厚度,最大柱狀晶體結構的深寬比可達到8:1;若電鍍時,柱狀晶體高度超過電子阻劑厚度,便會生成硒化鎘香菇形結構。最後,我們在分析上分別做了兩項量測:硒化鎘柱狀晶體在能量分散光譜儀(EDS)的分析及在紅外線-拉曼散射光譜儀吸收譜峰量測。

    We demonstrate a unique method for fabrication of two dimensional (2D) arrays of CdSe pillars with large aspect (height-to-width) ratios for optics applications. The fabrication technique combines electron beam lithography for periodic pattern definition and chemical electrodeposition for the growth of 2D arrays of CdSe pillars. The arrays are made on a relatively small area, about square of tenths of microns.
    In this method, cyclic voltammetric deposition with resist-coated indium tin oxide substrate as the working electrode, Pt slab as the counter-electrode and the saturated calomel electrode as reference electrode is performed. The pillars of semiconductor are synthesized by electrochemical deposition from aqueous solution of CdSO4 , SeO2 and H2SO4. During the electrodeposition, the working electrode potential relative to SCE is swept between – 400 mV and – 800 mV at several scan rates. After the first cycle, the heights of the CdSe pillars are found to increase linearly with number of cycles, and the growth rate is about 38.8 nm per cycle. After electrodeposition, the samples are soaked in an acetone bath to remove the resist mask.
    With this technique, the pillar with a large aspect ratio of 8 is achievable. The minimum diameter of the pillar is 80 nm. The height of the pillar can be as large as 640 nm, which is about the thickness of the resist layer. Depositing CdSe pillars to a height over the resist will result in a mushroom structure. The geometry of the fabricated pillars is examined by scanning electron microscope and atomic force microscope, while their properties are characterized by energy-dispersive spectrometer and infrared Raman-scattering spectrometer.

    總目錄 ……………………………………………………………Ⅰ 中文摘要 …………………………………………………………Ⅳ 英文摘要 …………………………………………………………Ⅴ 第一章 序論…………………………………………………1 1.1 序言……………………………………………………………1 1.2 半導體材料……………………………………………………2 1.3 半導體的導電機理特性………………………………………4 1.3.1 能階、能帶與能隙…………………………………………4 1.3.2 導電度………………………………………………………5 1.3.3 P、N接面……………………………………………………5 1.3.4 直接能隙、間接能隙………………………………………6 1.3.4 發光二極體…………………………………………………6 1.4 導體奈米晶體量子侷限化效應………………………………7 第二章 光子晶體簡介……………………………………10 2.1 光子晶體的由來……………………………………………10 2.2 光子能帶……………………………………………………10 2.3 1D、2D以及3D的光子晶體…………………………………11 2.4 能帶禁區……………………………………………………12 2.5 光子晶體的應用……………………………………………13 2.7 光子晶體的光轉折技術突破………………………………14 2.8 光通訊產業的前景…………………………………………15 第三章 實驗部分…………………………………………16 3.1 研究動機……………………………………………………16 3.2 樣品製作……………………………………………………17 3.2.1 基板的處理………………………………………………17 3.3 電子束微影部分……………………………………………17 3.3.1 簡介電子束微影製程……………………………………17 3.3.2 硒化鎘晶體結構的主要製程設計………………………19 3.4 電化學反應…………………………………………………21 3.5 硒化鎘的氧化還原反應……………………………………22 第四章 實驗結果與討論…………………………………26 4.1 反應條件……………………………………………………26 4.1.1 掃瞄速率與電鍍時間對於柱狀結構成長的關係………26 4.1.2 理想的掃描速率…………………………………………26 4.1.3 成長趨勢關係……………………………………………28 4.1.4 不同的掃瞄速率…………………………………………30 4.2 最高的柱狀結構晶體………………………………………30 4.3 最大的柱狀結構高/寬比…………………………………32 4.4 最小直徑的硒化鎘柱狀結構………………………………33 4.5 不同形狀硒化鎘晶體結構的電鍍沈積……………………34 4.6 T型柱狀結構的成長機制…………………………………36 4.7 濃度的影響…………………………………………………39 4.8 能量分散光譜儀分析………………………………………39 4.9 拉曼振動光譜儀分析………………………………………42 4.10 定電流電鍍法……………………………………………43 4.11 設計導路晶體排列………………………………………45 第五章 總結與未來展望…………………………………47 參考文獻……………………………………………………48

    1. S. M., Sze, Physics of Semiconductor Devices(New York: John Wiley &Sons,1981)
    2. C., Kittel, Introduction to Solid State Physics(New York: John Wiley &Sons,1996)
    3. B.G., Streetman, S., Banerjee, Solid State Electronic Device (Prentice
    Hall,2000)
    4. L.E., Brus, J.Phys.Chem. 1996,271,933.
    5. Y., Wang, N., Herron, J.Phys.Chem. 1991, 95, 525
    6. M.G., Bawendi, M,.L., Steigerwald, L.E., Brus, Annu. Rev. Phys. Chem., 1990, 41, 477
    7. A. P., Alivisator, Science, 1996, 271, 933
    8. J. H., Fendler, Chem. Rev., 1987, 87, 877.
    9. E. Yablonovitch, J. Phys.: Condens. Matter, 1993,5, 2443.
    10. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett., 1990, 65, 3152.
    11. K. W.-K. Shung and Y.-C. Tsai, Phys. Rev. B , 1993, 48, 11265.
    12. E. Yablonovitch, Phys. Rev. Lett., 1987, 582059.
    13. S. John, Phys. Rev. Lett., 1987, 58, 2468.
    14. P. St. J. Russell, D. M. Atkin, T. A. Birks, P. J. Roberts, in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity and C. Weisbuch, Eds. (Klu- wer, Dordrecht, Netherlands, 1996), pp. 203-218.
    15. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, Electron. Lett., 1995, 31, 1941.
    16. S. Fan, P. R. Villeneuve, and J. D. Jaonnopoulos, Phys. Rev. Lett., 1997, 78, 3294.
    17. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals. (Princeton University, Princeton, 1995)
    18. Lin,S. Y., Fleming,J. G., Hetherington,D. L., Smith,B. K., Biswas,R., Ho,K. M., Sigalas,M. M., Zubrzycki,W., Kurtz,S. R., Bur, J. ,Nature ,1998, 394, 251.
    19. K. Sakoda, Phys. Rev. B, 1995, 52, 8992.
    20. L. Zavieh and T. Mayer, Appl. Phys. Lett., 1999, 75, 2533.
    21. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, Nature London., 2000, 405, 437.
    22. S. Kawakami, T. Kawashima, and T. Sato, Appl. Phys. Lett., 1999, 74, 463.
    23. M.Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. Pearsall, Appl. Phys. Lett., 2000, 77, 1937.
    24. S. Noda, A. Chutinan and M. Imada, Nature, 2000, 407, 608.
    25. S. Fan, P.Villeneuve, J. Joannopoulos, and H. Haus, Opt. Express ., 1998, 3, 4.
    26. S.Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, Science, 1998 , 282, 274.
    27. J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, Science, 1998, 282, 1476.
    28. B. Urso, O. Painter, J. Brien, T. Tombrello, A. Yariv, and A. Scherer,
    J. Opt. Soc. Am. B, 1998, 15, 1155.
    29. O. J., Painter, et al., Science, 1999, 284, 1819.
    30. S., Fan, P. R. ,Villeneuve, and J. D., Joannopoulos, Phys. Rev. Lett., 1998, 80, 960.
    31. S., Noda, K., Tomoda, N., Yamamoto, A., Chutinan, Science, 2000, 289, 604.
    32. M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, Nature, London, 2000, 404, 53.
    33. B. T., Holland, C. F., Blanford, and A., Stein, Science, 1998, 281, 538.
    34. J. E. , Wijnhoven, and W. L., Vos, Science, 1998, 281, 802.
    35. A. A., Zakhidov, et al. Science, 1998, 282, 897.
    36. Y. A., Vlasov, N., Yao, & D. J., Norris, Adv. Mater. , 1999, 11, 165.
    37. P. V. , Braun, P , Wiltzius, Nature, 1999, 402, 603.
    38. I. B., Divliansky, A., Shishido, I. C., Khoo, T. S., Mayer, D. P., S., Nishimura, C. D., Keating, and T. E., Mallouk, App. Phys. Lett, 2001, 79, 3392.
    39. J. D., Klein, R.D., Herrick, D., Palmer, M. J., Sailor, C.J., Brumlik, C.R. Martin, Chem.Mater , 1993, 5, 902.
    40. A. M., Kressin, V. V., Doan, J. D., Klein, M.J., Sailor, Chem.Mater, 1991, 3,1015.
    41.楊志忠, 新世紀奈米級光電材料結構 -- 光子晶體, 物理雙月刊(廿三卷四期)2001年12月, p.647.
    42. 張惠郁, 淺談新世代奈米玻璃材料(光子晶體).。工研院IEK中心化學與材料研究組,2002年, 3月。
    43.蔡雅芝, 淺談光子晶體, 物理雙月刊(廿一卷四期)1999年8月, p.445。
    44.趙之堯,圓柱型硒化鎘奈米晶體的合成,碩士論文,台灣,1999。
    45.葉俊嘉,氮化鎵奈米粒子及奈米晶體線的合成、鑑定與性質,碩士論文,台灣,2000。

    無法下載圖示
    QR CODE