簡易檢索 / 詳目顯示

研究生: 倪永婷
Ni, Yung-Ting
論文名稱: 開發利用聚集誘導發光染料修飾之胜肽偵測蛋白激酶活性快篩方法
Develop Aggregation-induced Emission Dyes Coupling with Peptide Substrate as Rapid Protein Kinase Activity Detection Kit.
指導教授: 李賢明
Lee, Hsien-Ming
陳錦地
Chen, Chin-Ti
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 100
中文關鍵詞: 聚集誘導發光蛋白激酶活性測試
英文關鍵詞: Aggregation-induced Emission, Protein Kinase, Activity Detection Kit
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.071.2018.B05
論文種類: 學術論文
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陳錦地老師實驗室設計出具有推、拉電子結構的螢光團,且不共平面的共軛結構使螢光團具有誘導堆疊放光的特性,並以帶正電荷或負電荷離子修飾增加親水性,開發此系列螢光團對生物相關及醫學研究應用性。
    將此系列螢光團修飾在胜肽上,作為偵測蛋白激酶A活性的生物探針,蛋白激酶A在細胞內能催化蛋白質磷酸化,參與細胞內代謝、凋亡、分化…等重要生理機能,蛋白激酶A功能異常與癌症或神經衰退重要疾病有高度相關性。
    本實驗利用鑭系元素氧化物吸附磷酸化胜肽,且氧化物不溶於水可誘導螢光團堆疊放光,搭配濾紙過濾固體並利用以螢光強度作為磷酸化胜肽半定量,胜肽磷酸化程度取決於蛋白激酶A活性強弱,成功開發具有專一性蛋白激酶活性螢光快篩方法。

    We synthesized a series of aggregation-induced emission (AIE) dyes which were designed by Dr. Chin-Ti Chen’s group. The AIE dyes have nonplanar conjugat-ed structure which is crucial to provide the unique fluorescent turn-on property upon aggregation. In order to increase water solubility of our probes, we modified AIE dyes with hydrophilic ligands such as positively charge ammonium group or nega-tively charged sulfite group.
    Kinase family is responsible for catalyzing intracellular protein phosphoryla-tion. It is one of the most important enzymes target in human diseases including cancer and neurodegenerative disorders. To apply AIE dyes in detection of biological events, we coupled AIE dye with peptide substrate as bioluminescent probe for Pro-tein Kinase A (PKA) detection.
    We used lanthanum(III) oxide that can interact with phosphorylated AIE-peptide, and its poor solubility in water enhanced the AIE fluorescence. The solid mixture was then immobilized on a filter paper for quantitative analysis of PKA activity. The approach is potentially useful as a rapid kinase activity detection kit based on AIE dyes.

    第一章 緒論 1 1-1 AIE(aggregate induced emission) 螢光染料 1 1-1-2 分子結構特性 5 1-2 AIE螢光染料在生物分子上之應用 7 1-2-1 限制分子轉動誘發發光 7 1-2-2 溶解度差異誘導堆疊發光 9 1-3 蛋白質磷酸化在生物體表現影響與偵測方法 10 1-3-1 偵測32P標定之放射性同位素 11 1-3-2 磷酸化之蛋白質譜分析 12 1-3-3 利用共振能量轉移(FRET)設計螢光生物探針 15 1-3-4 利用非共振能量轉移設螢光生物探針 16 1-3-5 本次實驗設計 21 第二章 實驗方法 32 2-1 染料合成 32 2-2 螢光染料胜肽合成 45 2-3 實驗儀器與藥品 49 第三章 結果與討論 54 3-1 AIE染料之光學特性分析 54 3-2 AIE peptide無佐劑時的光譜特性 61 3-3 利用佐劑辨識AIE磷酸化胜肽的方式 64 3-3-1 利用磷酸化多肽可被鑭系元素氧化物吸附特性使用濾紙簡易偵測生物磷酸化反應 64 3-3-2 利用磷酸化多肽可被鑭系元素離子配位特性使用濾紙簡易偵測生物磷酸化反應 67 3-3-3 利用上轉換奈米粒子配位磷酸根導致與AIE染料之FRET偵測法 71 第四章 利用AIE-peptide偵測及半定量PKA之磷酸化反應 76 4-1 利用AIE4-Kemptide 進行kinase assay測試 76 4-2 緩衝溶液內利用Gd2O3/Yb2O3及濾紙半定量PKA活性 78 4-3 結論 81

    1. Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications 2001, (18), 1740-1741.
    2. Wang, H.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z., AIE luminogens: emission brightened by aggregation. Materials Today 2015, 18 (7), 365-377.
    3. Bhongale, C. J.; Chang, C. W.; Lee, C. S.; Diau, E. W. G.; Hsu, C. S., Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. Journal of Physical Chemistry B 2005, 109 (28), 13472-13482.
    4. Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission. Chemi-cal Society Reviews 2011, 40 (11), 5361-5388.
    5. Wu, J. S.; Liu, W. M.; Ge, J. C.; Zhang, H. Y.; Wang, P. F., New sensing mecha-nisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews 2011, 40 (7), 3483-3495.
    6. Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission: phe-nomenon, mechanism and applications. Chemical Communications 2009, (29), 4332-4353.
    7. Kwok, R. T. K.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z., Biosensing by lu-minogens with aggregation-induced emission characteristics. Chemical Society Re-views 2015, 44 (13), 4228-4238.
    8. Liu, H. L.; Song, P. S.; Wei, R. R.; Li, K.; Tong, A. J., A facile, sensitive and se-lective fluorescent probe for heparin based on aggregation-induced emission. Talanta 2014, 118, 348-352.
    9. Shi, H. B.; Kwok, R. T. K.; Liu, J. Z.; Xing, B. G.; Tang, B. Z.; Liu, B., Re-al-Time Monitoring of Cell Apoptosis and Drug Screening Using Fluorescent Light-Up Probe with Aggregation-Induced Emission Characteristics. Journal of the American Chemical Society 2012, 134 (43), 17972-17981.
    10. Arrington, J. V.; Hsu, C. C.; Elder, S. G.; Tao, W. A., Recent advances in phos-phoproteomics and application to neurological diseases. Analyst 2017, 142 (23), 4373-4387.
    11. Paradela, A.; Pablo Albar, J., Advances in the analysis of protein phosphoryla-tion. Journal of Proteome Research 2008, 7 (5), 1809-1818.
    12. Machida, M.; Kosako, H.; Shirakabe, K.; Kobayashi, M.; Ushiyama, M.; Ina-gawa, J.; Hirano, J.; Nakano, T.; Bando, Y.; Nishida, E.; Hattori, S., Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. Febs Journal 2007, 274 (6), 1576-1587.
    13. Nelson, C. A.; Szczech, J. R.; Xu, Q. G.; Lawrence, M. J.; Jin, S.; Ge, Y., Meso-porous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chemical Communications 2009, (43), 6607-6609.
    14. Leitner, A., Phosphopeptide enrichment using metal oxide affinity chromatog-raphy. Trac-Trends in Analytical Chemistry 2010, 29 (2), 177-185.
    15. Lin, B.; Li, T.; Zhao, Y.; Huang, F.-K.; Guo, L.; Feng, Y.-Q., Preparation of a TiO2 nanoparticle-deposited capillary column by liquid phase deposition and its ap-plication in phosphopeptide analysis. Journal of Chromatography A 2008, 1192 (1), 95-102.
    16. Jabeen, F.; Najam-ul-Haq, M.; Ashiq, M. N.; Rainer, M.; Huck, C. W.; Bonn, G. K., Gadolinium oxide: Exclusive selectivity and sensitivity in the enrichment of phosphorylated biomolecules. Journal of Separation Science 2016, 39 (21), 4175-4182.
    17. Zhou, J.; Du, X. W.; Berciu, C.; He, H. J.; Shi, J. F.; Nicastro, D.; Xu, B., En-zyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Al-kaline Phosphatases on Live Cells. Chem 2016, 1 (2).
    1. Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications 2001, (18), 1740-1741.
    2. Wang, H.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z., AIE luminogens: emission brightened by aggregation. Materials Today 2015, 18 (7), 365-377.
    3. Bhongale, C. J.; Chang, C. W.; Lee, C. S.; Diau, E. W. G.; Hsu, C. S., Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. Journal of Physical Chemistry B 2005, 109 (28), 13472-13482.
    4. Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission. Chemical Society Reviews 2011, 40 (11), 5361-5388.
    5. Wu, J. S.; Liu, W. M.; Ge, J. C.; Zhang, H. Y.; Wang, P. F., New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews 2011, 40 (7), 3483-3495.
    6. Kwok, R. T. K.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z., Biosensing by luminogens with aggregation-induced emission characteristics. Chemical Society Reviews 2015, 44 (13), 4228-4238.
    7. Liu, H. L.; Song, P. S.; Wei, R. R.; Li, K.; Tong, A. J., A facile, sensitive and selective fluorescent probe for heparin based on aggregation-induced emission. Talanta 2014, 118, 348-352.
    8. Shi, H. B.; Kwok, R. T. K.; Liu, J. Z.; Xing, B. G.; Tang, B. Z.; Liu, B., Real-Time Monitoring of Cell Apoptosis and Drug Screening Using Fluorescent Light-Up Probe with Aggregation-Induced Emission Characteristics. Journal of the American Chemical Society 2012, 134 (43), 17972-17981.
    9. Arrington, J. V.; Hsu, C. C.; Elder, S. G.; Tao, W. A., Recent advances in phosphoproteomics and application to neurological diseases. Analyst 2017, 142 (23), 4373-4387.
    10. Paradela, A.; Pablo Albar, J., Advances in the analysis of protein phosphorylation. Journal of Proteome Research 2008, 7 (5), 1809-1818.
    11. Machida, M.; Kosako, H.; Shirakabe, K.; Kobayashi, M.; Ushiyama, M.; Inagawa, J.; Hirano, J.; Nakano, T.; Bando, Y.; Nishida, E.; Hattori, S., Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. Febs Journal 2007, 274 (6), 1576-1587.
    12. Nelson, C. A.; Szczech, J. R.; Xu, Q. G.; Lawrence, M. J.; Jin, S.; Ge, Y., Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chemical Communications 2009, (43), 6607-6609.
    13. Leitner, A., Phosphopeptide enrichment using metal oxide affinity chromatography. Trac-Trends in Analytical Chemistry 2010, 29 (2), 177-185.
    14. Lin, B.; Li, T.; Zhao, Y.; Huang, F.-K.; Guo, L.; Feng, Y.-Q., Preparation of a TiO2 nanoparticle-deposited capillary column by liquid phase deposition and its application in phosphopeptide analysis. Journal of Chromatography A 2008, 1192 (1), 95-102.
    15. Jabeen, F.; Najam-ul-Haq, M.; Ashiq, M. N.; Rainer, M.; Huck, C. W.; Bonn, G. K., Gadolinium oxide: Exclusive selectivity and sensitivity in the enrichment of phosphorylated biomolecules. Journal of Separation Science 2016, 39 (21), 4175-4182.
    16. Zhou, J.; Du, X. W.; Berciu, C.; He, H. J.; Shi, J. F.; Nicastro, D.; Xu, B., Enzyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Alkaline Phosphatases on Live Cells. Chem 2016, 1 (2).
    17. Drummen, G. P. C., Fluorescent Probes and Fluorescence (Microscopy) Techniques - Illuminating Biological and Biomedical Research. Molecules 2012, 17 (12), 14067-14090.
    18. Hu, R. R.; Lager, E.; Aguilar-Aguilar, A.; Liu, J. Z.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Zhong, Y. C.; Wong, K. S.; Pena-Cabrera, E.; Tang, B. Z., Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives. Journal of Physical Chemistry C 2009, 113 (36), 15845-15853.
    19. Lei, C.; Zhou, L.; Xu, C.; Sun, X. R.; Nouwens, A.; Yu, C. Z., Binder-Free TiO2 Monolith-Packed Pipette Tips for the Enrichment of Phosphorylated Peptides. Australian Journal of Chemistry 2016, 69 (12), 1396-1401.
    20. Fukuda, I.; Hirabayashi-Ishioka, Y.; Sakikawa, I.; Ota, T.; Yokoyama, M.; Uchiumi, T.; Morita, A., Optimization of Enrichment Conditions on TiO2 Chromatography Using Glycerol As an Additive Reagent for Effective Phosphoproteomic Analysis. Journal of Proteome Research 2013, 12 (12), 5587-5597.
    21. Yoo, H. J.; Hakansson, K., Phosphate-containing Metabolite Enrichment with TiO2 Micro-tips. Bulletin of the Korean Chemical Society 2012, 33 (8), 2475-2476.
    22. Irague, R., Topham, C. M., Martineau, N., Baylac, A., Auriol, C., Walther, T., Francois, J. M., Andre, I. and Remaud-Simeon, M., A generic HTS assay for kinase screening: Validation for the isolation of an engineered malate kinase, Plos One 2018, 13 (2), 1-15.

    無法下載圖示 本全文未授權公開
    QR CODE