研究生: |
蕭瑋仁 Hsiao, Wei-Jen |
---|---|
論文名稱: |
合成孔徑數位全像顯微術最佳化超解析及其共光程螺旋相位濾波之研究 Studies on Optimized Super-resolution Synthetic Aperture Digital Holographic Microscopy and Common-path Spiral Phase Filtering |
指導教授: |
鄭超仁
Cheng, Chau-Jern |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 數位全像顯微術 、合成孔徑 、升採樣 、解析度 、螺旋相襯顯微術 、共光程 |
英文關鍵詞: | digital holographic microscopy, synthetic aperture, up-sampling, resolution, spiral phase contrast microscopy, common-path |
DOI URL: | https://doi.org/10.6345/NTNU202204302 |
論文種類: | 學術論文 |
相關次數: | 點閱:215 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討如何在數位全像顯微術中達成系統最佳化解析度的目的,並設法以共光程技術來簡化光學實驗架構與提升系統穩定度。研究中以反射式數位全像顯微術為基礎,利用記錄菲涅爾全像片的方法並搭配升採樣技術增加像素解析度,再以合成孔徑技術提升系統空間解析度,即完成最佳化解析度之系統設計。在最佳化解析度的實驗架構下我們成功地以可見光波段雷射光源量測出線寬約160 nm的線對物體,並達到相位精準度約6 nm。另外在共光程架構中,我們透過空間光調制器產生螺旋相位濾波器,並放置於成像系統中的傅立葉平面,如此可使單一光束分離為參考光波與物體光波,而得以記錄下數位全像片。接著由數值運算方法即可定量計算出物體之複數振幅資訊。在此共光程的架構下,物體光與參考光之間的干涉效果不易受外界環境影響,如此即有效地增加系統穩定度且簡化了光學實驗架構。最終將共光程螺旋數位全像顯微術與合成孔徑技術結合後,以波長為650 nm雷射為實驗光源的條件下達到約280 nm的橫向解析度與4 nm的相位精準度。
This works mainly discusses how to optimize the system resolution in the digital holographic microscopy (DHM). We also try to enhance the system stability and simplify the experimental architecture by applying common-path setup. This research bases on reflection type DHM. The pixel resolution is improved by recording Fresnel hologram and up-sampling method. Then, the synthetic aperture (SA) technique is employed to enhance the spatial resolution in DHM system. In the experiments, the SA up-sampling technique gives better image resolution up to about 160 nm with phase accuracy about 6 nm by using visible light source. In addition, we produce a spiral phase filter by spatial light modulator (SLM) and place in the Fourier plane of common-path imaging system. The digital hologram can be recorded by separated the probe beam into object beam and reference beam. The quantitative complex amplitude information of object can thus be obtained by numerical reconstruction. In this common-path system, the stable architecture of interference system can avoid the influence from the external environment. So, it effectively increases system stability and simplifies the optical experimental setup. Finally, combing common-path spiral DHM and SA technique with 650 nm laser light source, the lateral resolution achieves about 280 nm with phase accuracy about 4 nm.
[1] D. Gabor, “A New Microscopic Principle,” Nature 161, 777-778 (1948).
[2] E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
[3] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[4] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic Data Storage in Three-Dimensional Media,” Appl. Opt. 5, 1303-1311 (1966).
[5] J. Kim, J. Choi, J. An, N. Kim, and K. Lee, “Digital holographic security system based on random phase encoded reference beams and fingerprint identification,” Opt. Comm. 247, 265-274 (2005).
[6] T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221-1223 (1998).
[7] E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
[8] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms” Appl. Opt. 38, 6994-7001 (1999).
[9] I. Yamaguchi, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[10] C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143-3145 (2002)
[11] M. Kim, Y. Choi, C. F. Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148-150 (2011).
[12] Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett. 36, 4263-4265 (2011).
[13] M. Kim, Y. Choi, C. F. Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[14] W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution.” Opt. Express 18, 11181–11191 (2010).
[15] A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy.” Sci. Rep. 3, 1717 (2013).
[16] W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light-Science & Applications 4, e261, 2015.
[17] L. A. Williams, G. Nehmetallah, R. Aylo, and P. P. Banerjee, “Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms.” Appl. Opt. 54, 1443-1452 (2015).
[18] A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).
[19] S. Bernet, A. Jesacher, S. Furhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy” Opt. Express 14, 3792–3805 (2006).
[20] C. Maurer, S. Bernet, and M. Ritsch-Marte, “Refining common path interferometry with a spiral phase Fourier filter,” J. Opt. A: Pure Appl. Opt. 11, 094023 (2009).
[21] C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5, 81–101 (2011).
[22] J. W. Goodman, Introduction to Fourier Optics – 3rd ed., Roberts & Company Publishers, Greenwood Village (2005).
[23] N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[24] U. Schnars and W. P. O. Jüptner, Digital Holography, Springer US, New York, (2005).
[25] C. J. Cheng, Y. C. Lin, M. L. Hsieh, and H. Y. Tu, “Complex modulation characterization of liquid crystal spatial light modulators by digital holographic microscopy,” Jpn. J. Appl. Phys. 47, 3527–3529 (2008).
[26] J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179-2181 (2002).
[27] A. Hussain, J. L. Martínez, A. Lizana, and J. Campos, “Super resolution imaging achieved by using on-axis interferometry based on a Spatial Light Modulator,” Opt. Express 21, 9615-9623 (2013).
[28] C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356-2358 (2008).
[29] X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54, A51-A58 (2015).
[30] P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328-1330 (2013)