研究生: |
邱瑋文 Chiu, Wei-Wen |
---|---|
論文名稱: |
高溫超導量子干涉儀之磁粒子造影系統開發與特性研究 Development and Characteristic of high temperature SQUID based magnetic particle imaging system |
指導教授: |
廖書賢
Liao, Shu-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 高溫超導量子干涉儀 、磁粒子造影系統 、磁性奈米粒子 |
英文關鍵詞: | High-Tc SQUID, MPI, MNPs |
DOI URL: | http://doi.org/10.6345/NTNU201900483 |
論文種類: | 學術論文 |
相關次數: | 點閱:239 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究在屏蔽屋內架設一套使用高溫超導量子干涉元件(High Temperature Superconducting Quantum Interference Devices, High-Tc SQUID)的磁粒子造影系統(Magnetic Particle Imaging, MPI)。因為High-Tc SQUID是一種靈敏度極高的磁力計,所以適合應用於微小磁性感測,量測在未來可被作為標靶顯影劑且生物相容性極高的奈米磁粒子。
本系統具有極低之背景雜訊,在1 Hz與100 Hz時的系統雜訊頻譜分別為43.390 pT/Hz1/2與1.462 pT/√Hz1/2,並使用交流模式掃描樣品,最大掃描範圍為12 cm × 12 cm。系統最小樣品量測為0.031 M,100 µL。同時配合步進馬達來移動樣品來提升空間解析度,最後透過小範數估計法(Minimum-Norm Estimation, MNE)來重建樣品在空間中的分布,進一步再利用侷限座標法得到更貼近樣品形貌的重建影像。本研究並將磁粒子造影系統所量測到的功能性影像與磁振造影的結構性影像整合,驗證於磁性生醫影像應用的可行性。
In this study, a magnetic particle imaging system (MPI) using High Temperature Superconducting Quantum Interference Devices (High-Tc SQUID) was installed in the shielded house. Because High-Tc SQUID is a highly sensitive magnetometer, it is suitable for small magnetic sensing, measuring nano magnetic particles that can be used as target developers in the future and have high biocompatibility.
The system has extremely low background noise. The system noise spectrum at 1 Hz and 100 Hz is 43.390 pT /Hz1/2 and 1.462 pT /Hz1/2, respectively, and the sample is scanned using the AC measurement mode. At present, the limit of the system can detect sample concentration is 0.031 M, 100 μL .The maximum scan area is 12 cm × 12 cm, with a stepping motor to move the sample to improve the spatial resolution, and finally through the Mini-Norm Estimation (MNE) to reconstruct the distribution of the sample in space, and further use the constraint coordinate method calculate reconstructed image that is closer to the topography of the sample.
In this study, the functional image measured by the magnetic particle imaging system was integrated with the structural image of the magnetic resonance imaging to verify the feasibility of the magnetic biomedical imaging application.
[1] 楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,第二十八卷,第四期,2006。
[2] 楊謝樂,「高靈敏度磁減量生醫檢測原理及應用」,台灣磁性技術協會會訊,第 51 期,2010。
[3] Gleich, B. and R. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles. Nature, 2005. 435(7046): p. 1214-1217.
[4] 蔡牧修(2016)。《大面積可調式多通道磁粒子造影系統架設與特性研究》。國立台灣師範大學光電科技研究所碩士論文,未出版,台北。
[5] 童元甫(2018)。《多通道陣列式磁粒子造影系統開發與特性研究應用於生物影像》。國立台灣師範大學光電科技研究所碩士論文,未出版,台北。
[6] 陳昭翰,「超導量子干涉元件發展的回顧與展望」,台灣磁性技術協會會訊,第 51 期,2010。
[7] Wang, J.Z., S.J. Williamson, and L. Kaufman, MAGNETIC SOURCEIMAGES DETERMINED BY A LEAD-FIELD ANALYSIS - THE UNIQUE MINIMUM-NORM LEAST-SQUARES ESTIMATION. Ieee Transactions on Biomedical Engineering, 1992. 39(7): p.665-675.
[8] S. Foner, digital Encyclopedia of Applied Physics, MEASUREMENT OF MAGNETIC PROPERTIES AND QUANTITIES”, WILEY-VCH Verlag GmbH & Co KGaA
[9] [11]Goodwill, P. W., Scott, G. C., Stang, P. P., & Conolly, S. M. (2009). “Narrowband magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 28(8),1231-1237.
[10] ]Goodwill, Patrick W.,and Steven M. Conolly."The x-space formulation of the magnetic particle imaging process:1-D signal,resolution, bandwidth, SNR, SAR, and magnetostimulation." Medical Imaging, IEEE Transactions on 29.11 (2010): 1851-1859.
[11] Goodwill, P. W., Tamrazian, A., Croft, L. R., Lu, C. D., Johnson, E.M.,Pidaparthi,R.,... & Conolly, S. M. (2011).“Ferrohydrodynamic relaxometry for magnetic particle imaging.” Applied Physics Letters, 98(26), 262502-262502.
[12] Goodwill, P. W., & Conolly, S. M. (2011). “Multidimensional x-space magnetic particle imaging.”Medical Imaging,IEEE Transactions on, 30(9),1581-1590.
[13] Goodwill, Patrick W., et al. "An x-space magnetic particle imaging scanner." Review of Scientific Instruments 83.3 (2012): 033708 033708.
[14] Gleich, B., ... & Buzug, T. M. (2010). “Model-based reconstruction for magnetic particle imaging.”Medical Imaging, IEEE Transactions on,29(1),12-18.
[15] Knopp,T.,Biederer,S.,Sattel,T.F.,Rahmer,J.,Weizenecker,J.,Gleich,B...,& Buzug, T.M. (2010).“2D model-based reconstruction for magnetic particle imaging.”Medical physics, 37,485