簡易檢索 / 詳目顯示

研究生: 彭德軒
Peng, Te-Hsuan
論文名稱: 超級籃球聯賽之進階攻守數據研究
A Study of Basketball Analytics in Super Basketball League
指導教授: 朱文增
Chu, Wen-Tseng
學位類別: 碩士
Master
系所名稱: 運動休閒與餐旅管理研究所
Graduate Institute of Sport, Leisure and Hospitality Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 150
中文關鍵詞: 超級籃球聯賽運動數據分析籃球進階攻守數據分析
英文關鍵詞: Super Basketball League, Sports Analytics, Basketball Analytics
DOI URL: https://doi.org/10.6345/NTNU202202071
論文種類: 學術論文
相關次數: 點閱:263下載:42
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 運動數據分析可謂近三十年來重要趨勢,各類籃球進階攻守數據模型以數學統計方法分析比賽結果及運動表現,除了比起傳統的基本攻守統計 (Box Score) 有更好的預測力與解釋力,並能解釋更多場內外之現象,進而提供教練團、球隊管理階層及場外有關人士更多有用資訊。目的:應用各種進階數據於超級籃球聯賽分析,探討適合超級籃球賽分析者。方法:本研究收集各種進階攻守數據、球員表現進階數據模型及比賽結果預測模式,計算超級籃球聯賽之分析結果,探討其適用性與解釋力。結果:一、各進階攻守數據能夠有效解釋各項基本攻守統計數據背後的效率表現。二、各進階數據模型能夠分析超級籃球聯賽球員整體表現,其中勝場貢獻值最能有效預測超級籃球聯賽個人獎項。三、各比賽結果預測模是皆能解釋90% 以上的勝負結果,其中鐘型曲線最為優異。結論:各種進階攻守數據模型能夠有效分析超級籃球聯賽球隊、球員表現與預測比賽結果,得從中再加以探討各種影響因素。

    Basketball analytics is an increasing trend in the past thirty decades. Advanced statistics models show better predictive and explanatory power than the traditional box score views. The purpose of this study is to analyze the productivity and efficiency of teams and players in the Taiwanese Super Basketball League (SBL) by using various basketball analytic models. The result shows that each analytic model can be used in analyzing SBL after appropriate modifications and adjustments for its coefficients or calculation methods. The average possessions per game in the 13th SBL were about 78, which is the foundation of most analytic models used in our study. The Win Shares model shows better explanatory power of wins. Moreover, it is relatively accurate in predicting individual awards in SBL. Besides, the Bell Curve method has the optimal accuracy in winning predictions. In conclusion, we can use those analytic models to measure the factors influencing productivity and efficiency of teams and players in SBL.

    中文摘要 i Abstract ii 謝誌 iii 目次 iv 表次 vi 圖次 ix 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究問題 2 第四節 名詞釋義 2 第五節 研究範圍 4 第六節 研究限制 5 第貳章 文獻探討 6 第一節 籃球基本攻守統計相關研究與應用 6 第二節 籃球進階攻守數據分析相關研究與應用 13 第三節 衡量球員整體表現之相關研究與應用 21 第四節 比賽結果預測之相關研究與應用 44 第五節 其他籃球數據分析相關研究與應用 50 第參章 研究方法 51 第一節 研究流程 51 第二節 基礎攻守統計數據選取 53 第三節 進階攻守數據選取與分析方法 55 第肆章 研究結果 76 第一節 各種進階攻守數據探討 76 第二節 各種球員表現進階數據模型探討 93 第三節 各種球員表現進階數據模型與個人獎項之關係 130 第四節 各種比賽結果預測模式探討 138 第伍章 結論與建議 143 第一節 結論 143 第二節 建議 145 第三節 未來研究方向 146 參考文獻 147 中文部分 147 英文部分 148

    中文部分
    王彥智 (2013)。以B-Spline方法預測NBA冠軍 (未出版碩士論文)。國立政治大學,臺北市。
    王盈婷 (2016)。勝場貢獻值之研究與應用-以超級籃球聯賽為例 (未出版碩士論文)。國立臺灣師範大學,臺北市。
    李寶 (2008,5月6日)。SBL年度MVP陳信安大贏家。民生報。取自http://msnews.n.yam.com
    杜雨軒 (2015)。利用配適觀點探討SBL籃球對戰的勝負關鍵因素 (未出版碩士論文)。國立中興大學,臺中市。
    邱楚翔 (2014)。團隊表現績效預測:以NBA籃球運動為例 (未出版碩士論文)。國立政治大學,臺北市。
    陳佳郁、劉有德 (2010)。數據會說話:球類運動技戰術分析方法探討。臺灣運動心理學報,17,49-68。
    陳雍仁 (2011,4月20日)。SBL頒獎星光黯淡。蘋果日報。取自http://www.appledaily.com.tw
    黃義翔、譚醒鴻、蘇裕勝 (2013)。籃球攻守紀錄的特殊性與重要性。大專體育,124,31-38。Doi: 10.6162/SRR.2013.124.05。
    鄧元湘、林文斌、陳一進、廖俊欽 (2005)。第一屆超級籃球聯賽球員績效評析。中華民國大專院校94年度體育學術研討會專刊,211-221。
    蘇皇瑋 (2015)。棒球勝場貢獻值之研究-以中華職棒23年至25年為例 (未出版碩士論文)。國立臺灣師範大學,臺北市。

    英文部分
    Alamar, B. (2013). Sports analytics : a guide for coaches, managers, and other decision makers. New York, NY: Columbia University Press.
    Berri, D. J. (1999). Who is "Most Valuable"? Measuring the Player's Production of Wins in the National Basketball Association. Managerial and Decision Economics, 20(8), 411-427. doi: 10.1002/1099-1468(199912)20:8<411::AID-MDE957>3.0.CO;2-G.
    Berri, D. J. (2008). A Simple Model of Worker Productivity in the National Basketball Association. In Humphreys, B. & Howard, D. R. (Eds.), The Business of Sports (pp. 1-40). Westport, CT: Praeger.
    Berri, D. J. (2012). Measuring Performance in the National Basketball Association. In Shmanske, S. & Kahane, L. (Eds.), The Oxford Handbook of Sports Economics (pp. 94-117). New York, NY: Oxford University Press.
    Berri, D. J. & Bradbury, C. (2010). Working in the Land of the Metricians. Journal of Sports Economics, 11(1). 29-47. doi: 10.1177/1527002509354891.
    Berri, D. J. & Krautmann, A. C. (2013). Understanding the WNBA on and off the court. In Leeds, E. M. & Leeds, M. A. (Eds.), Handbook on the Economics of Women in Sports (pp. 132-155). Cheltenham, UK: Edward Elgar Publishing.
    Berri, D. J., Schmidt, M. B., & Brook, S. L. (2006). The wages of wins: Taking measure of the many myths in modern sport. Stanford, CA: Stanford University Press.
    Berri, D. J. & Schmidt, M. B. (2010). Stumbling on wins: Two Economists Explore the Pitfalls on the Road to Victory in Professional Sports. Princeton, NJ: Financial Times Press.
    Bhandari, I. S., Colet, E., Parker, J., Pines, Z., Pratap, R., & Ramanujam, K. (1997). Advanced scout: Data mining and knowledge discovery in NBA data. Data Mining and Knowledge Discovery, 1(1), 121-125.
    Camerer, C. F. (1989). Does the Basketball Market Believe in the Hot Hand? American Economic Review, 79(5), 1257-1261.
    Cao, C. (2012). Sports Data Mining Technology Used in Basketball Outcome Prediction. (Unpublished Master Dissertation). Dublin Institute of Technology, Dublin, Ireland.
    Gift, P. & Rodenberg, R. M. (2014). Napoleon Complex: Height Bias Among National Basketball Association Referees. Journal of Sports Economics, 15(5), 541-558.
    Goldsberry, K. & Weiss, E. (2013, March). The Dwight Effect: A New Ensemble of Interior Defense Analytics for the NBA. Oral Presented at the 7th annual MIT Sloan Sports Analytics Conference, Boston, Pennsylvania. Full paper retrived from http://www.sloansportsconference.com/wp-content/uploads/2013/The%20Dwight%20Effect%20A%20New%20Ensemble%20of%20Interior%20Defense%20Analytics%20for%20the%20NBA.pdf
    Hollinger, J. (2002) Pro basketball Prospectus. Washington, DC: Brassey.
    Kvam, P. & Sokol, J. S. (2006). A Logistic Regression/ Markov Chain Model For NCAA Basketball. Naval Research Logistics, 53(8), 788–803. doi:10.1002/nav.20170.
    Kubatko, J., Oliver, D., Pelton, K., & Rosenbaum, D. T. (2007). A Starting Point for Analyzing Basketball Statistics. Journal of Quantitative Analysis in Sports, 3(3), 1-24. doi: 10.2202/1559-0410.1070.
    Kubatko, J.(2009). Calculating Win Shares. Retrieved from http://www.basketball-reference.com/about/ws.html.
    Kubatko, J. (2013). Pythagoras of the Hardwood. Retrieved from http://statitudes.com/blog/2013/09/09/pythagoras-of-the-hardwood.
    Loeffelholz, B., Bednar, E., & Bauer, K. W. (2009). Predicting NBA Games Using Neural Networks. Journal of Quantitative Analysis in Sports, 5(1), 1-17. doi: 10.2202/1559-0410.1156.
    Oliver, D. (1996). Pythagorean 16.5 Method. Retrived from http://www.rawbw.com/~deano/helpscrn/pyth.html.
    Oliver, D. (2004). Basketball on paper: Rules and Tools for performance analysis. Washington, DC: Brassey.
    Pomeroy, K. (2012). Ratings Explanation. Retrieved from http://kenpom.com/blog/index.php/weblog/entry/ratings_explanation.
    Price, J. & Wolfers, J. (2007). Racial Discrimination among NBA Referees. Cambridge, MA: National Bureau of Economic Worker 13206.
    Rodenberg, R. M. & Lim, C. H. (2009). Payback calls: A Starting Point for Measuring Basketball Referee Bias and Impact on Team Performance. European Sport Management Quaterly, 9(4), 375-387.
    Rosner, S. R. & Shropshire, K. L. (2004). The business of sports. Sudbury, MA: Jones and Bartlett Publishers.
    Shea, S. M. & Baker, C. E. (2013). Basketball Analytics: Objective and Efficient Strategies for Understanding How Teams Win. St. Louis, MO: CreateSpace Independent Publishing Platform.
    Teramoto, M. & Cross, C. L. (2010). Relative Importance of Performance Factors in Winning NBA Games in Regular Season versus Playoffs. Journal of Quantitative Analysis in Sports, 6(3). doi: 10.2202/1559-0410.1260.
    Winston, W. L. (2009). Mathletics. Princeton, NJ: Princeton University Press.

    下載圖示
    QR CODE