研究生: |
蔡譯禎 Tsai, Yi-Chen |
---|---|
論文名稱: |
調節幹流水對福山試驗林兩種附生植物影響之探討 The effect of stemflow manipulation on the two epiphytes at Fushan Experimental Forest |
指導教授: |
林登秋
Lin, Teng-Chiu |
口試委員: |
王巧萍
Wang, Chiao-Ping 陳可萱 Chen, Ko-Hsuan 林登秋 Lin, Teng-Chiu |
口試日期: | 2021/09/24 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 附生植物 、調節幹流水 、水分壓力 、葉面積 、比葉面積 、葉片乾燥物質含量 、碳同位素 、營養 |
英文關鍵詞: | Epiphytes, stemflow manipulation, water stress, leaf area, SLA, LDMC, carbon isotope, nutrient |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300676 |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來全球降水模式改變,降水集中、乾旱延長,對植物的多樣性與生產力造成負面影響,當中附生植物因生長在樹冠層、缺乏接地根系,故可能為首當其衝的類群。過去部分學者認為,相較地生植物,附生植物面對突發性或延長的乾旱,可能會更加敏感、衝擊更大,因此認為可做為氣候變遷之早期指標類群。但也有部分研究認為,因為長期生活在水份動盪的微環境中,許多附生植物已發展出可協助面對乾旱的特徵,因此受到的影響可能未必較為嚴重。過去相關研究受限於器材的架設,多以觀察性實驗或溫室實驗等方法探討附生植物面臨缺水壓力的反應,但此兩種方法各有限制,因此本研究嘗試以自製調節供水裝置,首次於野外對附生植物進行調節供水來探討這個問題。實驗選在福山植物園的天然闊葉林進行,針對兩種常見附生植物—臺灣巢蕨(Asplenium nidus)與、垂葉書帶蕨(Haplopteris zosterifolia),利用自製裝置調節幹流水量,減少25%與50%,為期十個月(2020年7月~2021年4月)。藉由測量生長狀況、葉片橫切構造、葉片營養元素及與比葉面積 (SLA)、葉片乾燥物質含量 (LDMC)、葉片與角質層厚度與δ13C等可作為缺水壓力指標的相關特徵,探討附生植物對於水分壓力的反應。實驗結果發現形態構造具有明顯差異的兩附生植物,在實驗前受到的水分壓力相當。減水處理對垂葉書帶蕨的葉片數與葉面積有較明顯的負面影響,但其餘特徵則無顯著差異,顯示葉片維持一定的光合作用與生長,代表葉片數的下降可能為水分調節與生長間的權衡結果,水分散失下降與營養重新分配,協助垂葉書帶蕨面對水分壓力。此外實驗期間較低的空氣水氣不飽和度 (VPD) 也可能協助緩和附生植物受到的水分壓力,空氣中有更多可利用的水氣,附生植物可能透過葉片吸收攔截水氣,緩解缺水壓力。葉片營養分析也發現,移除部分幹流水並未造成葉片營養含量下降。除了幹流水外,附生植物或許有其他獲得營養的管道。垂葉書帶蕨可能是透過攔截水氣從中獲取營養。在雲霧頻繁濕度高的福山試驗林,水氣可能是附生植物重要的水分與營養來源之一,在水氣充足的情況下可以緩解幹流水減少造成的壓力,未來若因氣候變遷導致霧氣減少,則可能會對附生植物造成更嚴重的衝擊。
Climate Change has caused changes in precipitation pattern and longer and more severe drought, which has negative influences on the biodiversity and productivity of plants. Epiphytes are exposed to the ambient water fluctuation so that could be most sensitive to such changes compared to plants rooted in soil. Some researchers consider epiphytes as early indicator group of climate change, while the others suspect that epiphytes may not be sensitive to climate change. This is because through long-term adaptation epiphytes might have developed traits allowing them to grow in micro-environment with high fluctuation of water availability. Observational studies and common garden studies are commonly used approaches to study the response of epiphytes to changes in water availability. However, both approaches has major limitations. In this study, customary-made stemflow-manipulation devices were set up to explore how drought stress affect two epiphytes, Asplenium nidus and Haplopteris zosterifolia, in the Fushan Experimental Forest of northern Taiwan for ten months. Using the devices, three levels of stemflow reduction were created, 0% (Control), 25% and 50%. We examined the traits indicative of plant growth condition, number of leaves and leaf area, and drought stress, SLA, LDMC, thickness of leaves and cuticle and δ13C, and nutrients of leaves to explore the effects of the treatments. Although H. flexuosa does not have a large substrate which Asplenium nidus has, both epiphytes experienced similar water stress before the experiment. The removal of 25% and 50% stemflow did have more negative impact on leaf number and area for H. flexuosa than A. nidus. Despite the negative effect on leaf area, the treatment didn’t have impacts on other traits. The results indicated the possible trade-off between the photosynthesis and water regulation. Losing leaves relieved water deficit by decreasing total transpiration and as such maintained the growth of the rest of leaves. Frequent fog and high humidity of the Fushan Experimental Forest may also mitigate water stress of H. flexuosa. However, if the atmosphere become drier due to the climate change, it could negatively affect the epiphytes.
郭城孟,2001。蕨類圖鑑 1。台北市:遠流出版有限公司。
楊遠波、劉和義、林讚標,2003。台灣維管束植物簡誌。行政院農業委員會,第五卷。
嚴重佑,2004。關刀溪森林生態系著生植物基質之節肢動物群聚結構。國立中興大學昆蟲學系碩士論文。
Aspelmeier, S., & Leuschner, C. (2004). Genotypic variation in drought response of silver birch (Betula pendula): Leaf water status and carbon gain. Tree Physiology, 24(5), 517–528. https://doi.org/10.1093/treephys/24.5.517
Awasthi, O. P., Sharma, E., & Palni, L. M. S. (1995). Stemflow: a source of nutrients in some naturally growing epiphytic orchids of the Sikkim Himalaya. Annals of Botany, 75(1), 5-11. https://doi.org/10.1016/S0305-7364(05)80003-4
Beier, C., Beierkuhnlein, C., Wohlgemuth, T., Penuelas, J., Emmett, B., Körner, C., Boeck, H. de, Christensen, J. H., Leuzinger, S., Janssens, I. A., & Hansen, K. (2012). Precipitation manipulation experiments – challenges and recommendations for the future. Ecology Letters, 15(8), 899–911. https://doi.org/10.1111/j.1461-0248.2012.01793.x
Benzing, D. H. (1990). Vascular Epiphytes: General Biology and Related Biota. Cambridge University Press. https://doi.org/10.1017/CBO9780511525438
Benzing, D. H. (2000). Bromeliaceae: profile of an adaptive radiation. Cambridge University Press.
Berry, Z. C., Emery, N. C., Gotsch, S. G., & Goldsmith, G. R. (2019). Foliar water uptake: Processes, pathways, and integration into plant water budgets. Plant, Cell & Environment, 42(2), 410–423. https://doi.org/10.1111/pce.13439
Blumenthal, D. M., Mueller, K. E., Kray, J. A., Ocheltree, T. W., Augustine, D. J., & Wilcox, K. R. (2020). Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands: The central roles of phenology and leaf dry matter content. Journal of Ecology, 108(6), 2336–2351. https://doi.org/10.1111/1365-2745.13454
Bongers, F. J., Olmo, M., Lopez-Iglesias, B., Anten, N. P. R., & Villar, R. (2017). Drought responses, phenotypic plasticity and survival of Mediterranean species in two different microclimatic sites. Plant Biology, 19(3), 386–395. https://doi.org/10.1111/plb.12544
Bosabalidis, A. M., & Kofidis, G. (2002). Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science, 163(2), 375–379. https://doi.org/10.1016/S0168-9452(02)00135-8
Burgess, S. S. O., & Dawson, T. E. (2004). The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, cell & environment, 27(8), 1023-1034. https://doi.org/10.1111/j.1365-3040.2004.01207.x
Burkard, R., Bützberger, P., & Eugster, W. (2003). Vertical fogwater flux measurements above an elevated forest canopy at the Lägeren research site, Switzerland. Atmospheric Environment, 37(21), 2979–2990. https://doi.org/10.1016/S1352-2310(03)00254-1
Campany, C. E., Pittermann, J., Baer, A., Holmlund, H., Schuettpelz, E., Mehltreter, K., & Watkins, J. E. (2021). Leaf water relations in epiphytic ferns are driven by drought avoidance rather than tolerance mechanisms. Plant, Cell & Environment, 44(6), 1741–1755. https://doi.org/10.1111/pce.14042
Cardelús, C. L., & Chazdon, R. L. (2005). Inner-crown Microenvironments of Two Emergent Tree Species in a Lowland Wet Forest. Biotropica, 37(2), 238–244. https://doi.org/10.1111/j.1744-7429.2005.00032.x
Cea, M. G., Claverol, S., Castillo, C. A., Pinilla, C. R., & Ramírez, L. B. (2014). Desiccation tolerance of Hymenophyllacea filmy ferns is mediated by constitutive and non-inducible cellular mechanisms. Comptes Rendus Biologies, 337(4), 235-243. https://doi.org/10.1016/j.crvi.2014.02.002
Chang, S.-C., Lai, I.-L., & Wu, J.-T. (2002). Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research, 64(1), 159–167. https://doi.org/10.1016/S0169-8095(02)00088-1
Chen, D., Wang, S., Xiong, B., Cao, B., & Deng, X. (2015). Carbon/nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. PloS one, 10(8), e0137026. https://doi.org/10.1371/journal.pone.0137026
Chen, J., Xiao, G., Kuzyakov, Y., Jenerette, G. D., Ma, Y., Liu, W., Wang, Z., & Shen, W. (2017). Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest. Biogeosciences, 14(9), 2513–2525. https://doi.org/10.5194/bg-14-2513-2017
Chen, L.-C., Wang, L.-J., Martin, C. E., & Lin, T.-C. (2019). Mediation of stemflow water and nutrient availabilities by epiphytes growing above other epiphytes in a subtropical forest. Ecohydrology, 12(7), e2140. https://doi.org/10.1002/eco.2140
Costa, D. S., Zotz, G., Hemp, A., & Kleyer, M.(2018). Trait patterns of epiphytes compared to other plant life-forms along a tropical elevation gradient. Functional Ecology, 32(8), 2073–2084. https://doi.org/10.1111/1365-2435.13121
Cowan, I. R. (1986). Economics of carbon fixation in higher plants. Economics of carbon fixation in higher plants., 133-170.
Darby, A., Draguljić, D., Glunk, A., & Gotsch, S. G. (2016). Habitat moisture is an important driver of patterns of sap flow and water balance in tropical montane cloud forest epiphytes. Oecologia, 182(2), 357–371. https://doi.org/10.1007/s00442-016-3659-5
Díaz, I. A., Sieving, K. E., Peña-Foxon, M. E., Larraín, J., & Armesto, J. J. (2010). Epiphyte diversity and biomass loads of canopy emergent trees in Chilean temperate rain forests: A neglected functional component. Forest Ecology and Management, 259(8), 1490–1501. https://doi.org/10.1016/j.foreco.2010.01.025
Ellwood, M. D. F., & Foster, W. A. (2004). Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature, 429(6991), 549–551. https://doi.org/10.1038/nature02560
Felsmann, K., Baudis, M., Gimbel, K., Kayler, Z. E., Ellerbrock, R., Bruehlheide, H., Bruckhoff, J., Welk, E., Puhlmann, H., Weiler, M., Gessler, A., & Ulrich, A. (2015). Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany. PLOS ONE, 10(4), e0122539. https://doi.org/10.1371/journal.pone.0122539
Flanagan, L. B., Sharp, E. J., & Letts, M. G. (2013). Response of plant biomass and soil respiration to experimental warming and precipitation manipulation in a Northern Great Plains grassland. Agricultural and Forest Meteorology, 173, 40–52. https://doi.org/10.1016/j.agrformet.2013.01.002
Fletcher, L. R., Cui, H., Callahan, H., Scoffoni, C., John, G. P., Bartlett, M. K., Burge, D. O., & Sack, L. (2018). Evolution of leaf structure and drought tolerance in species of Californian Ceanothus. American Journal of Botany, 105(10), 1672–1687. https://doi.org/10.1002/ajb2.1164
Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1-2), 73-106. https://doi.org/10.1016/S0012-8252(01)00056-3
Fu, P.-L., Liu, W.-J., Fan, Z.-X., & Cao, K.-F. (2016). Is fog an important water source for woody plants in an Asian tropical karst forest during the dry season? Ecohydrology, 9(6), 964–972. https://doi.org/10.1002/eco.1694
Gehrig-Downie, C., Obregón, A., Bendix, J., & Gradstein, S. R. (2011). Epiphyte Biomass and Canopy Microclimate in the Tropical Lowland Cloud Forest of French Guiana: Epiphyte Abundance in Lowland Cloud Forest. Biotropica, 43(5), 591–596. https://doi.org/10.1111/j.1744-7429.2010.00745.x
Gotsch, S. G., Asbjornsen, H., Holwerda, F., Goldsmith, G. R., Weintraub, A. E., & Dawson, T. E. (2014). Foggy days and dry nights determine crown-level water balance in a seasonal tropical montane cloud forest. Plant, Cell & Environment, 37(1), 261–272. https://doi.org/10.1111/pce.12151
Gotsch, S. G., Dawson, T. E., & Draguljić, D. (2018). Variation in the resilience of cloud forest vascular epiphytes to severe drought. New Phytologist, 219(3), 900–913. https://doi.org/10.1111/nph.14866
Gotsch, S. G., Nadkarni, N., & Amici, A. (2016a). The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology, 32(5), 455–468. https://doi.org/10.1017/S026646741600033X
Gotsch, S. G., Nadkarni, N., & Amici, A. (2016b). The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology, 32(5), 455–468. https://doi.org/10.1017/S026646741600033X
Gotsch, S. G., Nadkarni, N., Darby, A., Glunk, A., Dix, M., Davidson, K., & Dawson, T. E. (2015). Life in the treetops: Ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecological Monographs, 85(3), 393–412. https://doi.org/10.1890/14-1076.1
Gotsch, S. G., Nadkarni, N., & Amici, A. (2016). The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology, 32(5), 455-468.https://doi.org/10.1017/S026646741600033X
Graham, E. A., & Andrade, J. L. (2004). Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest. American Journal of Botany, 91(5), 699–706. https://doi.org/10.3732/ajb.91.5.699
Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., & Jump, A. S. (2017). Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 20(4), 539–553. https://doi.org/10.1111/ele.12748
Hao, G. Y., Sack, L., Wang, A. Y., Cao, K. F., & Goldstein, G. (2010). Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non‐hemiepiphytic Ficus tree species. Functional Ecology, 24(4), 731-740.
https://doi.org/10.1111/j.1365-2435.2010.01724.x
Harmon ME, Lajtha K. 1999. Analysis of detritus and organic horizons for mineral and organic constituents. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P, editors. Standard soil methods for long-term ecological research. New York: Oxford Univ Press. p 143-65.
He, M., & Dijkstra, F. A. (2014). Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytologist, 204(4), 924–931. https://doi.org/10.1111/nph.12952
Hodgkison, R., Balding, S. T., Akbar, Z., & Kunz, T. H. (2003). Roosting ecology and social organization of the spotted-winged fruit bat, Balionycteris maculata (Chiroptera: Pteropodidae), in a Malaysian lowland dipterocarp forest. Journal of Tropical Ecology, 19(6), 667–676. https://doi.org/10.1017/S0266467403006060
Hogg, E. H. (Ted), Brandt, J. P., & Michaelian, M. (2008). Impacts of a regional drought on the productivity, dieback, and biomass of western Canadian aspen forests. Canadian Journal of Forest Research, 38(6), 1373–1384. https://doi.org/10.1139/X08-001
Hsu, C.-C., Horng, F.-W., & Kuo, C.-M. (2002). Epiphyte Biomass and Nutrient Capital of a Moist Subtropical Forest in North-Eastern Taiwan. Journal of Tropical Ecology, 18(5), 659–670.
Hsu, J. S., Powell, J., & Adler, P. B. (2012). Sensitivity of mean annual primary production to precipitation. Global Change Biology, 18(7), 2246–2255. https://doi.org/10.1111/j.1365-2486.2012.02687.x
Jenks, M. A., & Hasegawa, P. M. (2008). Plant Abiotic Stress. John Wiley & Sons.
Jian, P.-Y., Hu, F., Wang, C.-P., Chiang, J.-M., & Lin, T.-C. (2013). Ecological Facilitation between Two Epiphytes through Drought Mitigation in a Subtropical Rainforest. PloS One, 8, e64599. https://doi.org/10.1371/journal.pone.0064599
Karasawa, S., & Hijii, N. (2006). Determinants of litter accumulation and the abundance of litter-associated microarthropods in bird’s nest ferns (Asplenium nidus complex) in the forest of Yambaru on Okinawa Island, southern Japan. Journal of Forest Research, 11(5), 313–318. https://doi.org/10.1007/s10310-006-0213-z
Levia Jr, D. F., & Frost, E. E. (2003). A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Journal of Hydrology, 274(1-4), 1-29. https://doi.org/10.1016/S0022-1694(02)00399-2
Liu, W., Liu, W., Li, P., Duan, W., & Li, H. (2010). Dry season water uptake by two dominant canopy tree species in a tropical seasonal rainforest of Xishuangbanna, SW China. Agricultural and Forest Meteorology, 150(3), 380–388. https://doi.org/10.1016/j.agrformet.2009.12.006
Ma, Z., Peng, C., Zhu, Q., Chen, H., Yu, G., Li, W., ... & Zhang, W. (2012). Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests. Proceedings of the National Academy of Sciences, 109(7), 2423-2427. https://doi.org/10.1073/pnas.1111576109
Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203-216. https://doi.org/10.1071/FP03236
Nadkarni, N. M. (1984). Epiphyte Biomass and Nutrient Capital of a Neotropical Elfin Forest. Biotropica, 16(4), 249–256. https://doi.org/10.2307/2387932
Nadkarni, N. M., & Matelson, T. J. (1991). Fine Litter Dynamics within the Tree Canopy of a Tropical Cloud Forest. Ecology, 72(6), 2071–2082. https://doi.org/10.2307/1941560
Ng, C. K. Y., & Hew, C. S. (2000). Orchid pseudobulbs – `false’ bulbs with a genuine importance in orchid growth and survival! Scientia Horticulturae, 83(3), 165–172. https://doi.org/10.1016/S0304-4238(99)00084-9
Nishida, K., & Hanba, Y. T. (2017). Photosynthetic response of four fern species from different habitats to drought stress: Relationship between morpho-anatomical and physiological traits. Photosynthetica, 55(4), 689–697. https://doi.org/10.1007/s11099-017-0694-3
North, G. B., Brinton, E. K., Browne, M. G., Gillman, M. G., Roddy, A. B., Kho, T. L., ... & Brodersen, C. R. (2019). Hydraulic conductance, resistance, and resilience: how leaves of a tropical epiphyte respond to drought. American journal of botany, 106(7), 943-957. https://doi.org/10.1002/ajb2.1323
Olivares, I., Svenning, J.-C., van Bodegom, P. M., & Balslev, H. (2015). Effects of Warming and Drought on the Vegetation and Plant Diversity in the Amazon Basin. The Botanical Review, 81(1), 42–69. https://doi.org/10.1007/s12229-014-9149-8
Pendergrass, A. G., & Hartmann, D. L. (2014). Changes in the Distribution of Rain Frequency and Intensity in Response to Global Warming. Journal of Climate, 27(22), 8372–8383. https://doi.org/10.1175/JCLI-D-14-00183.1
Petter, G., Wagner, K., Wanek, W., Delgado, E. J. S., Zotz, G., Cabral, J. S., & Kreft, H. (2016). Functional leaf traits of vascular epiphytes: Vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Functional Ecology, 30(2), 188–198. https://doi.org/10.1111/1365-2435.12490
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 182(3), 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x
Rapp, J. M., & Silman, M. R. (2014). Epiphyte response to drought and experimental warming in an Andean cloud forest. F1000Research, 3. https://doi.org/10.12688/f1000research.3-7.v2
Reynolds, V. A., Anderegg, L. D. L., Loy, X., HilleRisLambers, J., & Mayfield, M. M. (2018). Unexpected drought resistance strategies in seedlings of four Brachychiton species. Tree Physiology, 38(5), 664–677. https://doi.org/10.1093/treephys/tpx143
Rindyastuti, R., Nurfadilah, S., Rahadiantoro, A., Hapsari, L., & Abywijaya, I. K. (2018). Leaf anatomical characters of four epiphytic orchids of Sempu Island, East Java, Indonesia: The importance in identification and ecological adaptation. Biodiversitas Journal of Biological Diversity, 19(5), 1906–1918. https://doi.org/10.13057/biodiv/d190543
Sardans, J., & Peñuelas, J. (2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology and Biochemistry, 37(3), 455-461. https://doi.org/10.1016/j.soilbio.2004.08.004
Sardans, J., & Peñuelas, J. (2015). Potassium: A neglected nutrient in global change. Global Ecology and Biogeography, 24(3), 261–275. https://doi.org/10.1111/geb.12259
Schimel, D. S. (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1(1), 77–91. https://doi.org/10.1111/j.1365-2486.1995.tb00008.x
Schmidt, G., & Zotz, G. (2001). Ecophysiological consequences of differences in plant size: In situ carbon gain and water relations of the epiphytic bromeliad, Vriesea sanguinolenta. Plant, Cell & Environment, 24(1), 101–111. https://doi.org/10.1046/j.1365-3040.2001.00658.x
Sollins P, Glassman C, Paul EA, Swanston C, Lajtha K, Heil JW, Elliott ET. 1999. Soil carbon and nitrogen: pools and fractions. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P, editors. Standard soil methods for longterm ecological research. New York: Oxford Univ Press. p 89-105.
Stanton, D. E., Chávez, J. H., Villegas, L., Villasante, F., Armesto, J., Hedin, L. O., & Horn, H. (2014). Epiphytes improve host plant water use by microenvironment modification. Functional Ecology, 28(5), 1274–1283. https://doi.org/10.1111/1365-2435.12249
Stuntz, S., Ziegler, C., Simon, U., & Zotz, G. (2002). Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. Journal of Tropical Ecology, 18(2), 161–176. https://doi.org/10.1017/S0266467402002110
Thalmann, E., Burkard, R., Wrzesinsky, T., Eugster, W., & Klemm, O. (2002). Ion fluxes from fog and rain to an agricultural and a forest ecosystem in Europe. Atmospheric Research, 64(1), 147–158. https://doi.org/10.1016/S0169-8095(02)00087-X
Tsuji, W., Ali, M. E. K., Inanaga, S., & Sugimoto, Y. (2003). Growth and Gas Exchange of Three Sorghum Cultivars Under Drought Stress. Biologia Plantarum, 46(4), 583–587. https://doi.org/10.1023/A:1024875814296
Van Stan, J. T., & Pypker, T. G. (2015). A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Science of The Total Environment, 536, 813–824. https://doi.org/10.1016/j.scitotenv.2015.07.134
Watkins, J. E., Mack, M. C., Sinclair, T. R., & Mulkey, S. S. (2007). Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytologist, 176(3), 708–717. https://doi.org/10.1111/j.1469-8137.2007.02194.x
Wilcox, K. R., Shi, Z., Gherardi, L. A., Lemoine, N. P., Koerner, S. E., Hoover, D. L., Bork, E., Byrne, K. M., Cahill, J., Collins, S. L., Evans, S., Gilgen, A. K., Holub, P., Jiang, L., Knapp, A. K., LeCain, D., Liang, J., Garcia‐Palacios, P., Peñuelas, J., … Luo, Y. (2017). Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology, 23(10), 4376–4385. https://doi.org/10.1111/gcb.13706
Williams, C. B., Murray, J. G., Glunk, A., Dawson, T. E., Nadkarni, N. M., & Gotsch, S. G. (2020). Vascular epiphytes show low physiological resistance and high recovery capacity to episodic, short-term drought in Monteverde, Costa Rica. Functional Ecology, 34(8), 1537–1550. https://doi.org/10.1111/1365-2435.13613
Winkler, U., & Zotz, G. (2010). ‘And then there were three’: Highly efficient uptake of potassium by foliar trichomes of epiphytic bromeliads. Annals of Botany, 106(3), 421–427. https://doi.org/10.1093/aob/mcq120
Wu, Y., Song, L., Liu, W., Liu, W., Li, S., Fu, P., Shen, Y., Wu, J., Wang, P., Chen, Q., & Lu, H. (2018). Fog Water Is Important in Maintaining the Water Budgets of Vascular Epiphytes in an Asian Tropical Karst Forests during the Dry Season. Forests, 9(5), 260. https://doi.org/10.3390/f9050260
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., & Hungate, B. A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17(2), 927–942. https://doi.org/10.1111/j.1365-2486.2010.02302.x
Wullschleger, S. D., & Hanson, P. J. (2006). Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: Evidence from a long-term field manipulation study. Global Change Biology, 12(1), 97–109. https://doi.org/10.1111/j.1365-2486.2005.001082.x
Yahdjian, L., & Sala, O. E. (2002). A rainout shelter design for intercepting different amounts of rainfall. Oecologia, 133(2), 95–101. https://doi.org/10.1007/s00442-002-1024-3
Yang, S.-J., Sun, M., Yang, Q.-Y., Ma, R.-Y., Zhang, J.-L., & Zhang, S.-B. (2016). Two strategies by epiphytic orchids for maintaining water balance: Thick cuticles in leaves and water storage in pseudobulbs. AoB PLANTS, 8. https://doi.org/10.1093/aobpla/plw046
Zhang, S.-B., Dai, Y., Hao, G.-Y., Li, J.-W., Fu, X.-W., & Zhang, J.-L. (2015). Differentiation of water-related traits in terrestrial and epiphytic Cymbidium species. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00260
Zheng, Y., & Feng, Y. (2006). Fog water absorption by the leaves of epiphytes and non-epiphytes in Xishuangbanna. Ying yong sheng tai xue bao= The journal of applied ecology, 17(6), 977-981.
Zotz, G., & Thomas, V. (1999). How Much Water is in the Tank? Model Calculations for Two Epiphytic Bromeliads. Annals of Botany, 83(2), 183–192. https://doi.org/10.1006/anbo.1998.0809
Zotz, G., & Winkler, U. (2013). Aerial roots of epiphytic orchids: The velamen radicum and its role in water and nutrient uptake. Oecologia, 171(3), 733–741. https://doi.org/10.1007/s00442-012-2575-6
Zotz, G. (2016). Plants on plants-the biology of vascular epiphytes. Switzerland: Springer International Publishing. https://www.springer.com/gp/book/9783319392363