簡易檢索 / 詳目顯示

研究生: 洪偉哲
論文名稱: 以小波轉換鑑別人類情緒腦電波
Classification of human emotion from EEG using wavelet transform
指導教授: 葉榮木
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 110
中文關鍵詞: 腦電波情緒鑑別小波轉換支持向量機
英文關鍵詞: EEG, Emotion recognition, Wavelet transform, SVM
論文種類: 學術論文
相關次數: 點閱:227下載:41
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人類情緒的正確鑑別存在著許多的困難,根據每個人所經歷的事物與心情狀態,影響著即使面對相同的事件,所呈現的情緒強度也有所不同。而現今對於人類腦波的研究逐漸盛行,藉由大腦人機介面(Brain computer interface)收集腦電波(Electroencephalogram)訊號,經由訊號分析、特徵擷取以及分類器,來鑑別腦電波訊號的情緒類別。本研究的受測者為六位男性,四位女性。年齡介於20歲至28歲。實驗流程為撥放六種情緒的臉部圖片,分別為高興、驚訝、生氣、厭惡、難過和恐懼,每種情緒有20張圖片,共有120張圖片。使用NeuroScan大腦人機介面,藉由非侵入式的腦電波訊號量測,共有30個通道。紀錄完成後,進行腦電波訊號前處理降低腦電波訊號的雜訊,使得腦電波訊號更接近真實的訊號,接著繪製出大腦空間能量頻譜圖,用以了解腦電波訊號的頻帶能量分布差異。將腦電波訊號進行小波轉換(Wavelet transform)分解訊號,選取能量分布差異較大的θ波為分類波段,接著計算各種的特徵,共有八類特徵,分別為最大值(Max)、最小值(Min)、全距(Range)、標準差(Standard deviation)、絕對中位差(Median absolute deviation)、絕對平均差(Average absolute deviation)、能量(Energy)及特徵向量(Eigenvectors),將各種特徵投入支持向量機(Support vector machine)進行分類,訓練的方式將隨機抽取出60%的腦電波訊號區段為訓練資料,40%為測試資料,以隨機投入支持向量機作各種情緒的鑑別,得到情緒鑑別從最高到最低的正確辨識率分別為87.50%和62.50%,平均值為76.25%。
研究中發現當使用無效的特徵或是相似的特徵,無法增加情緒的鑑別率,但是若增加有效的特徵,鑑別率會隨之提高,不過也會增加複雜度,經由比較其中較為有效的特徵為全距、標準差、絕對中位差、絕對平均差、能量及特徵向量,可較為明顯增加鑑別的效果。

It’s difficult to classify the human emotions correctly. According to the events and mood which have experienced, even at the same event, people present the different emotional intensity. The current studies of prevail in EEG signals are more popular. The brain computer interface recorded EEG signals through feature extraction and classification to identify the type of EEG signals. Four females and six males in the age group of 20-28 years were employed as subjects in our experiment. During the experiment, 120 pictures were shown to the subjects for each 5seconds; 20 pictures per emotion. EEG signals recordings were conducted using the NeuroScan (30 channels). With the pre-process to EEG signals, we took the two trials for both the average, which aimed to reduce noise in EEG signals. And we also mapped the brain space energy spectrum and analyzed and found that EEG frequency θ band was the best one for classification. We used wavelet transform to decompose EEG signals. And then, we calculated all the characteristics features. There are eight kinds of features, including maximum, minimum, range, standard deviation, median absolute deviation, average absolute deviation, energy and eigenvectors. We took these characters into support vector machine for classification. The training data will be randomly selected from 60% of the EEG trials and the testing data will be randomly selected from 40% of the EEG trials. The highest emotional recognition rate we received was 87.50%, but the lowest recognition rate was 62.50%. The average of emotional recognition rate was 76.25%.
Since the use of invalid features or similar features, the rate of emotional identification could not be increased. However, if more useful features were used, the rate of emotional identification will be improved. By the comparison of two results, we found that the range, standard deviation, median absolute deviation, average absolute deviation, energy and eigenvectors were useful features.

誌 謝 I 摘 要 II Abstract III 目 錄 IV 圖 目 錄 VII 表 目 錄 X 第一章  緒論 1 1-1 研究背景 1 1-2 腦電波訊號 7 1-3 腦區域與功能 9 1-4 研究動機與目的 12 1-5 研究架構 13 1-6 論文架構 14 第二章  文獻探討 15 2-1 引言 15 2-2 情緒相關腦電波訊號研究概況 15 第三章  腦電波訊號相關研究方法 30 3-1 引言 30 3-2 腦電波訊號前處理濾波器介紹 31 3-2-1 數位濾波器 31 3-2-2 FIR濾波器 31 3-2-3 IIR濾波器 33 3-2-4 零相位延遲濾波器 34 3-3 小波轉換 36 3-4-1 小波函數 37 3-4-2 小波分解 38 3-4-3 小波合成 38 3-4-4 多貝西小波 39 3-4 支持向量機 42 第四章  實驗設計與流程 48 4-1 引言 48 4-2 情緒圖片與實驗流程 48 4-3 實驗環境與設備 52 4-4 腦電波訊號前處理 56 4-4-1 去除眼動雜訊 57 4-4-2 擷取所要的腦電波訊號 60 4-4-3 濾除高頻雜訊及其他雜訊 61 4-4-4 腦電波訊號區段平均 63 4-5 腦電波訊號後處理 64 4-5-1 時頻分析 64 第五章  實驗結果與討論 66 5-1 引言 66 5-2 各種情緒的大腦空間能量頻譜圖 66 5-3 各種情緒的鑑別率 74 5-3-1 全部特徵的情緒鑑別率 76 5-3-2 最大值、最小值及標準差的情緒鑑別率 77 5-3-3 最大值、最小值、能量及標準差的情緒鑑別率 79 5-3-4 標準差、絕對中位差及絕對平均差的情緒鑑別率 80 5-3-5 全距、標準差、絕對中位差及絕對平均差的情緒鑑別率 81 5-3-6 標準差、絕對中位差、絕對平均差、能量及特徵向量的情緒鑑別率 82 5-3-7 結合α波與θ波的情緒鑑別率 84 5-3-8 情緒鑑別有效特徵與情緒相關頻帶 85 5-4 文獻比較 90 第六章  未來與展望 90 6-1 結論 93 6-2 未來與展望 94 參 考 文 獻 95 附 錄 A 100 附 錄 B 109

[1] Guest Editors, “Guest editorial the third international meeting on brain-computer interface technology: making a difference,” IEEE Transactions on Rehabilitation Engineering, vol. 14, no. 2, pp. 126-127, 2006
[2] R. Caton, “The Electric Currents of the Brain,” British Medical Journal, Vol. 2, pp. 278, 1875.
[3] H. Berger, “Über das Elektrenkephalogramm des Menschen,” European Archives of Psychiatry and Clinical Neuroscience, vol. 87, pp. 527-570, 1929.
[4] G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, and J.R. Wolpaw, “BCI2000: A General-purpose Brain-computer Interface (BCI) System,” IEEE Transactions on Biomedical Engineering, pp. 1034-1043, 2004.
[5] G. Dornhege, J. d. R. Millán, T. Hinterberger, D. J. McFarland, and K. R. Müller, “Toward brain-computer interfacing,” Cambridge, Mass.: MIT Press, 2007.
[6] S. G. Mason and G. E. Birch, “A brain-controlled switch for asynchronous control applications,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 10, pp. 1297-1307, 2000.
[7] J. d. R. Millán and J. Mouriño, “Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project,” IEEE Transactions on Rehabilitation Engineering, vol. 11, no. 2, pp. 159-161, 2003.
[8] R. Carter 著 洪蘭譯 「大腦的秘密檔案」,遠流出版社,2008。
[9] S. Sanei and J. A. Chambers, EEG Signal Processing, John Wiley & Sons, Ltd, 2007.
[10] T.K. Gregory and D.C. Pettus, “An Electroencephalographic Processing Algorithm Specifically Intended for Analysis of Cerebral Electrical Activity,” Journal of Clinical Monitoring and Computing, pp. 190-197, 2005.
[11] 李政杰,「發展EMD方法濾除腦波眨眼訊號並應用於測量疲勞狀態之研究」,國立台灣大學機械工程系研究所碩士論文,2008。
[12] http://ice.bio.ncue.edu.tw/~94230012/newfile28.html
[13] M. Murugappan, R. Nagarajan and S. Yaacob, “Classification of Human Emotion from EEG Using Discrete Wavelet Transform,” Biomedical Science and Engineering, pp. 390-396, 2010.
[14] P. C. Petrantonakis and L. J. Hadjileontiadis, “EEG-based Emotion Recognition Using Hybrid Filtering and Higher Order Crossings,” Proceedings of Affective Computing and Intelligent Interaction and Workshops, pp. 1-6, 2009.
[15] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung and H.H. Liu, “The empirical mode decomposition and the hilbert spectrum for nonlinear and nonstationary time series analysis,” Proceedings of the Royal Society, pp. 903-995, 1998.
[16] P.L. Lee, L.Z. Shang, Y.T. Wu, C.H. Shu, J.C. Hsieh, Y.Y. Lin, C.H. Wu, Y.L. Liu, C.Y. Yang, C.W. Sun and K.K. Shyu , “Single-trial analysis of cortical oscillatory activities during voluntary movements using empirical mode decomposition (EMD)-based spatiotemporal approach,” Annals of Biomedical Engineering, vol. 37, no.8, pp. 1683-1700, 2009.J.
[17] K. M. Sanjit, Digital Signal Processing, 3rd Ed., McGRAW.Hill International Edition, 2006.
[18] 陳志瑋,「研究以小波神經網路作μ波即時鑑別」,國立成功大學機械工程學系碩士論文,2002。
[19] 林志穎,「數位音訊廣播系統中轉換器之電路設計」,國立成功大學電機工程學系碩士論文,2001。
[20] 陳柏元「應用小波轉換及人工智慧進行配電系統電容切換暫態位置之判斷」,中原大學電機工程學系碩士論文,2005。
[21] S. Mallat, “A theory for multiresolution signal decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, 1989.
[22] A. Grossman and J. Morlet, “Decompositions of hardy functions into square integrable wavelets of constant shape,” SIAM Journal of Mathematical Analysis., vol. 15, no. 4, pp. 723-736, 1984.
[23] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure Applied Math, pp. 909-996, 1988.
[24] http://wavelets.pybytes.com/wavelet/db4/
[25] N. M. Temme, ”Asymptotics and Numerics of Zeros of Polynomials That Are Related to Daubechies Wavelets,” Applied and Computational Harmonic Analysis, pp. 414-428, 1997.
[26] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification algorithms for EEG-based brain computer interface,” Journal of Neural Engineering, vol. 4, pp. R1-R13, 2007.
[27] J. A. K. Suykens, and J. Vandewalle, “Least squares support vector machine classifiers,” Neural processing letters, vol. 9, pp. 293-300,1999.
[28] S. Theodoridis and K. Koutroumbas, “ Pattern Recognition, "Academic Press, second edition, 2003.
[29] E.M. Engelen, H. J. Markowitsch, C. V. Scheve, B. Röttger-Rössler, A. Stephan, M. Holodynski and M. Vandekerckhove, Emotions as Bio-cultural Processes: Disciplinary Debates and an Interdisciplinary Outlook, Springer Press, 2009.
[30] P. Ekman, W. V. Friesena, M. O'Sullivanb, A. Chan, I. D. Tarlatzisd, K. Heidere, R. Krausef, W. A. LeCompteg, T. Pitcairnh, P. E. Ricci-Bittii, K. Schererj, M. Tomitak and A. Tzavaras, “Universals and Cultural Differences in the Judgments of Facial Expressions of Emotion,” Journal of Personality and Social Psychology, pp. 712-717, 1987.
[31] P. J. Lang, “The emotion probe: Studies of motivation and attention,” American Psychologist, pp. 372-385, 1995.
[32] M. Lacoboni 著 洪蘭譯 「天生愛學樣:發現鏡像神經元」,遠流出版社,2009。
[33] F. Bourel, C. C. Chibelushi, and A. A. Low, “Robust Facial Expression Recognition Using a State-Based Model of Spatially-Localised Facial Dynamics,” Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 106-111, 2002.
[34] I. Cohen, A. Garg, and T. S. Huang, “Emotion Recognition from Facial Expressions using Multilevel HMM,” Proceedings of Neural Information Processing System, pp. 1-7, 2000.
[35] http://bml.ym.edu.tw/~download/html/
[36] http://www.neuroscan.com/landing.cfm
[37] E. H. Chudler, “Neuroscience for kids,” available at the links for on-line courses at the author’s homepage at
http://faculty.washington.edu/chudler/1020.html, 1996-2008.
[38] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addisson-Wesley Press, 1989.
[39] H. Ishibuchi, K. Nozaki, N. Yamamoto and H. Tanaka, “Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms,” Fuzzy Sets and Systems, pp. 237-253, 1994.
[40] R. J. Croft and R. J. Barry, “EOG Correction: Comparing Different Calibration Methods, and Determining The Number of Epochs Required in A Calibration Average,” Clinical Neurophysiology, pp. 440-443, 2000.
[41] R. J. Croft and R. J. Barry, “EOG correction: a new perspective,” Electroencephalography and Clinical Neurophysiology, pp. 387-394, 1998.
[42] M. Li and B. L. Lu, “Emotion classification based on gamma-band EEG,” Engineering in Medicine and Biology Society, pp. 1223-1226, 2009.
[43] P. C. Petrantonakis and L. J. Hadjileontiadis,“Emotion Recognition From EEG Using Higher Order Crossings,” Information Technology in Biomedicine, pp. 186-197, 2010.
[44] R. Khosrowabadi, H. C. Quek, A. Wahab and K. K. Ang, “EEG-based Emotion Recognition Using Self-Organizing Map for Boundary Detection,” International Conference on Pattern Recognition, pp. 4242-4245,2010.
[45] Y. P. Lin, C. H. Wang, T. P. Jung, T. L. Wu, S. K. Jeng, J. R. Duann and J. H. Chen, “EEG-Based Emotion Recognition in Music Listening,” IEEE Transactions on Biomedical Engineering, pp. 1798-1806, 2010.
[46] Y.C. Lim and B. Liu, “Design of Cascade Form FIR Filters with Discrete Valued Coefficients”, IEEE Transactions on Acoustics Speech. and Signal Processing, vol.36, 1988.
[47] 劉正達,蔡侑哲,陳嘉和,樂融及高家楠,「小波轉換」,中華技術學院電子工程學系專題,2006。
[48] http://scienceblogs.com/purepedantry/brain.gif.

下載圖示
QR CODE