研究生: |
王駿佾 June-Yi, Wang |
---|---|
論文名稱: |
視覺動作統整能力、空間能力在不同科技使用下對高一學生運動力學概念學習成效之影響 The influence of visual-motor integration and spatial ability on mechanics concept learning of tenth grade student with different technology usage. |
指導教授: |
吳心楷
Wu, Hsin-Kai |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 科技使用 、視覺動作統整能力 、空間能力 、另有概念 |
英文關鍵詞: | technology usage, visual-motor integration, spatial ability, alternative concept |
論文種類: | 學術論文 |
相關次數: | 點閱:228 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討不同科技使用、視覺動作統整能力、空間能力對學生運動力學中之拋體運動整體、記憶認知層次、高階認知層次(理解、應用、分析)之概念學習成效的影響。研究參與者為211名私立高一學生,並依班級分為電腦組(使用電腦)、觸控組(使用平板電腦)、動感組(使用平板電腦及其重力加速度感測器)。研究資料來源為拋體運動概念評量,內容包含單選題、複選題與開放式問答題。研究結果顯示科技使用不同對整體拋體運動概念學習成效沒有顯著影響,但觸控組、動感組之另有概念減少幅度比電腦組大。且在記憶認知層次電腦組概念學習成效優於觸控組與動感組,在高階認知層次觸控組與動感組概念學習成效優於電腦組。視覺動作統整能力雖對於高階認知層次有顯著影響,但此影響不會因為科技使用組別的不同而有所差異。反之對於空間能力而言,電腦組相較觸控組與動感組可能會使高空間能力學生於記憶層次的概念學習成效較出色,但也可能使低空間能力學生於高階層次的概念學習成效有限,即以平板電腦為載具之科技使用可能會減低空間能力對學習成效的影響。
綜合上述結果,整體而言此單元之教學以使用平板電腦搭配觸控功能但不使用重力加速度感測器特性,學生學習效果可能較佳。且不同科技使用的學習成效會依據不同教學目標類型或不同空間能力學生而有所不同,但不受視覺動作統整能力之影響。
This study identified the influence of different technology usage, visual-motor integration, and spatial ability on projectile motion concept learning, including cognitive levels of remember and advanced, in mechanics. 211 tenth grade students at a private senior high school in Taiwan divided into 3 groups (Computer group, Touch group, and Kinetic group) and participated in the 90-minute instructional lesson. Data collected from self-developed projectile motion assessment. The result of this study indicated that the concept learning effectiveness had no significant differences between technology usage groups. Although, students of Touch group and Kinetic group had more reduction of alternative concepts than Computer group. At the remember cognitive level, concept learning effectiveness of Computer group was better than Touch group and Kinetic group, but Touch group and Kinetic group were better than Computer group at the advanced cognitive level on the contrary. Visual-motor integration significantly influences concept learning effectiveness at the advanced cognitive level, but this influence does not vary with the different group. As far as spatial ability is concerned, high spatial ability students of Computer group had more concept learning effectiveness than the high spatial ability students of other groups. Also, low spatial ability students of Computer group had less concept learning effectiveness than the low spatial ability students of other groups.
In conclusion, concept learning of this projectile motion unit would be promising with using tablet PC’s characteristic of touching and excluding gravity acceleration sensors. And, concept learning effectiveness with different technology usage might vary with instruction objective and spatial ability of students but does not vary with visual-motor integration.
中文部分
林嘉琦(2006)。應用POE教學策略探討學習「溶解」單元概念改變之情形。國立高雄師範大學科學教育研究所碩士論文(未出版)。
邱維宣(2002)高中學生參與拋體運動專題實驗之研究。彰化師範大學物理學系碩士論文(未出版)。
康鳳梅(2002)。高工學生空間能力指標建構之研究(1/2)。行政院國家科學委員會專題研究計畫期中進度報告(NSC91-2516-S-003-007)。台北市:國立台灣師範大學工業教育學系。
康鳳梅、簡慶郎、鍾怡慧、詹秉鈞與盧永昌(2006)。高工學生空間能力常模及空間能力資源網建構之研究。師大學報,52(3),1-14。
張春興(1992)教育心理學。台北:東華。
張英鵬(1997)感覺運動訓練方案對國小語文學習障礙兒童感覺動作能力、語文學習與人際關係之影響。國立臺灣師範大學特術教育研究所碩士論文(未出版)。
教育部(2013)。教育部人才培育白皮書。台北市:教育部。
許天威(1986)學習障礙者之教育。台北市:五南。
游恆山(譯)(1991)。Robert, M. L.、Rita, W.-N.與Robert, V. K.著。發展心理學。台北市:五南圖書。
劉鴻香(1991)拜瑞視覺動作統整發展測驗修訂報告。臺北師院學報,4(1),487-526。
劉鴻香、陸莉(1999)拜瑞─布坦尼卡視覺─動作統整發展測驗。台北市:心理。
鄭海蓮、陳世玉(2007)標準化空間能力測驗之建模與驗證。教育研究與發展期刊,3(4),181-216。
英文部分
Amelink, C., Scales, G., & Tront, J. G. (2012). Student use of the Tablet PC: Impact on student learning behaviors. Advances in Engineering Education, 3(1).
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom's taxonomy of educational objectives. New York, NY: Longman.
Baenninger, M., & Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20(5-6), 327-344. doi: 10.1007/BF00287729
Barnhardt, C., Borsting, E., Deland, P., Pham, N., & Vu, T. (2005). Relationship between visual-motor integration and spatial organization of written language and math. Optometry & Vision Science, 82(2), 138-143.
Başer, M., & Geban, Ö. (2007). Effect of instruction based on conceptual change activities on students’ understanding of static electricity concepts. Research in Science & Technological Education, 25(2), 243-267. doi: 10.1080/02635140701250857
Beery, K. E. (1997). The Beery-Buktenica VMI: Developmental test of visual-motor integration with supplemental developmental tests of visual perception and motor coordination: administration, scoring, and teaching manual: New Jersey: Modern Curriculum Press.
Bo, J., Contreras-Vidal, J. L., Kagerer, F. A., & Clark, J. E. (2006). Effects of increased complexity of visuo-motor transformations on children’s arm movements. Human Movement Science, 25(4–5), 553-567. doi: http://dx.doi.org/10.1016/j.humov.2006.07.003
Bullock, D., Grossberg, S., & Guenther, F. H. (1993). A self-organizing neural model of motor equivalent reaching and tool use by a Mmultijoint arm. Journal of Cognitive Neuroscience, 5(4), 408-435. doi: 10.1162/jocn.1993.5.4.408
Carlsen, D. D., & Andre, T. (1992). Use of a microcomputer simulation and conceptual change text to overcome student preconceptions about electric circuits. Journal of Computer-based Instruction, 19(4), 105-109.
Chang, H.-Y., Wu, H.-K., & Hsu, Y.-S. (2013). Integrating a mobile augmented reality activity to contextualize student learning of a socioscientific issue. British Journal of Educational Technology, 44(3), E95-E99. doi: 10.1111/j.1467-8535.2012.01379.x
Contreras-Vidal, J., Bo, J., Boudreau, J. P., & Clark, J. (2005). Development of visuomotor representations for hand movement in young children. Experimental Brain Research, 162(2), 155-164. doi: 10.1007/s00221-004-2123-7
Cromack, J. (2008, Oct.). Technology and learning-centered education: Research-based support for how the tablet PC embodies the Seven Principles of Good Practice in Undergraduate Education. Paper presented at the Frontiers in Education Conference, 2008. FIE 2008. 38th Annual.
Daly, C. J., Kelley, G. T., & Krauss, A. (2003). Relationship between visual-motor integration and handwriting skills of children in kindergarten: A modified replication study. American Journal of Occupational Therapy, 57(4), 459-462.
de Jong, T., Martin, E., Zamarro, J.-M., Esquembre, F., Swaak, J., & van Joolingen, W. R. (1999). The integration of computer simulation and learning support: An example from the physics domain of collisions. Journal of Research in Science Teaching, 36(5), 597-615. doi: 10.1002/(SICI)1098-2736(199905)36:5<597::AID-TEA6>3.0.CO;2-6
de Jong, T., & Van Joolingen, W. R. (1998). Scientific Discovery Learning with Computer Simulations of Conceptual Domains. Review of Educational Research, 68(2), 179-201. doi: 10.3102/00346543068002179
de Koning, B. B., & Tabbers, H. K. (2011). Facilitating understanding of movements in dynamic visualizations: an embodied perspective. Educational Psychology Review, 23(4), 501-521. doi: 10.1007/s10648-011-9173-8
Derting, T. L., & Cox, J. R. (2008). Using a Tablet PC To Enhance Student Engagement and Learning in an Introductory Organic Chemistry Course. Journal of Chemical Education, 85(12), 1638. doi: 10.1021/ed085p1638
Dilber, R., Karaman, I., & Duzgun, B. (2009). High school students' understanding of projectile motion concepts. Educational Research and Evaluation, 15(3), 203-222. doi: 10.1080/13803610902899101
Enriquez, A. G. (2010). Enhancing Student Performance Using Tablet Computers. College Teaching, 58(3), 77-84. doi: 10.1080/87567550903263859
Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., . . . LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics - Physics Education Research, 1(1), 010103.
Fister, K. R., & McCarthy, M. L. (2008). Mathematics instruction and the tablet PC. International Journal of Mathematical Education in Science and Technology, 39(3), 285-292. doi: 10.1080/00207390701690303
Frolik, J., & Zurn, J. B. (2005). Evaluation of Tablet PCs for engineering content development and instruction. Computers in Education Journal, 15(3), 101-105.
Gardner, H., & Hatch, T. (1989). Educational Implications of the Theory of Multiple Intelligences. Educational Researcher, 18(8), 4-10. doi: 10.3102/0013189x018008004
Garg, A., Norman, G., Spero, L., & Taylor, I. (1999). Learning anatomy: do new computer models improve spatial understanding? Medical Teacher, 21(5), 519-522. doi:10.1080/01421599979239
Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61-98.
Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. Cortex, 48(7), 905-922. doi: 10.1016/j.cortex.2011.04.010
Goldstein, D. J., & Britt, T. W. (1994). Visual-motor coordination and intelligence as predictors of reading, mathematics, and written language ability. Perceptual and Motor Skills, 78(3), 819-823. doi: 10.2466/pms.1994.78.3.819
Hestenes, D., & Halloun, I. (1995). Interpreting the force concept inventory. The Physics Teacher, 33(8), 502-506.
Hsu, Y.-S., & Thomas, R. A. (2002). The impacts of a web-aided instructional simulation on science learning. International Journal of Science Education, 24(9), 955-979. doi: 10.1080/09500690110095258
Huk, T. (2006). Who benefits from learning with 3D models? the case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392-404. doi: 10.1111/j.1365-2729.2006.00180.x
Inoue, T., Yamamoto, Y., Nakazawa, K., Shigeno, H., & Okada, K. (2005). Proposal of a map-making system for mobile learning that uses subjective geographic recognition. Paper presented at the Fifth IEEE International Conference on Advanced Learning Technologies, Kaohsiung, Taiwan.
Jimoyiannis, A., & Komis, V. (2001). Computer simulations in physics teaching and learning: a case study on students' understanding of trajectory motion. Computers & Education, 36(2), 183-204.
Johansson, R. S., & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Current Opinion in Neurobiology, 2(6), 815-823. doi: 10.1016/0959-4388(92)90139-C
Kane, S. K., Jayant, C., Wobbrock, J. O., & Ladner, R. E. (2009, Oct.). Freedom to roam: a study of mobile device adoption and accessibility for people with visual and motor disabilities. Paper presented at the Proceedings of the 11th international ACM SIGACCESS conference on Computers and accessibility, Pittsburgh, Pennsylvania, USA.
Kim, J., Meltzer, C., Salehi, S., & Blikstein, P. (2011, Aug.). Process Pad: a multimedia multi-touch learning platform. Paper presented at the Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces.
Koile, K., & Singer, D. (2006). Development of a tablet-pc-based system to increase instructor-student classroom interactions and student learning. Paper presented at the Proc. of Workshop on the Impact of Pen-Based Technology on Education (WIPTE’06).
Kozhevnikov, M., & Thornton, R. (2006). Real-Time Data Display, Spatial Visualization Ability, and Learning Force and Motion Concepts. Journal of Science Education and Technology, 15(1), 111-132. doi: 10.1007/s10956-006-0361-0
Krathwohl, D. R. (2002). A Revision of Bloom's Taxonomy: An Overview. Theory into Practice, 41(4), 212-218. doi: 10.2307/1477405
Kulp, M. T. (1999). Relationship between Visual Motor Integration Skill and Academic Performance in Kindergarten through Third Grade. Optometry & Vision Science, 76(3), 159-163.
Lane, A. E., & Ziviani, J. M. (2010). Factors influencing skilled use of the computer mouse by school-aged children. Computers & Education, 55(3), 1112-1122. doi: 10.1016/j.compedu.2010.05.008
Lazonder, A. W., & Ehrenhard, S. (2014). Relative effectiveness of physical and virtual manipulatives for conceptual change in science: how falling objects fall. Journal of Computer Assisted Learning, 30(2), 110-120. doi: 10.1111/jcal.12024
Lee, J. (1999). Effectiveness of computer-based instructional simulation: A meta analysis. International Journal of Instructional Media, 26(1), 71-85. doi: citeulike-article-id:563542
Li, C., Pow, W. C., Wong, M. L., & Fung, C. W. (2010). Empowering student learning through Tablet PCs: A case study. Education and Information Technologies, 15(3), 171-180.
Lim, K. Y. (2011). What does the Tablet PC mean to you? A phenomenological research. Innovations in Education and Teaching International, 48(3), 323-333. doi: 10.1080/14703297.2011.593708
Linn, M. C., & Petersen, A. C. (1985). Emergence and Characterization of Sex Differences in Spatial Ability: A Meta--Analysis. Child Development, 56(6), 1479. doi: 10.1111/1467-8624.ep7252392
Lohman, D. F. (1996). Spatial ability and g. In I. D. P. Tapsfield (Ed.), (pp. 97-116). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395-405. doi: 10.1002/tea.3660220503
Møller, K. L., Georgsen, M., & Jelsbak, V. A. (2013, Mar.). Use of Tablets for Instruction and Learning in Microbiology Labs. Paper presented at the Learning & Teaching with Media & Technology ATEE-SIREM Winter Conference Proceedings 2013, Genoa, Italy.
Madeira, R. N., Correia, N., Guerra, M., Postolache, O., Dias, A., & Postolache, G. (2011). Designing personalized therapeutic serious games for a pervasive assistive environment. Paper presented at the IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH).
Marshall, P., Cheng, P. C.-H., & Luckin, R. (2010). Tangibles in the balance: a discovery learning task with physical or graphical materials. Paper presented at the Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, Cambridge, Massachusetts, USA.
Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389.
Mayer, T., Lebedev, M., Hunger, R., & Jaegermann, W. (2005). Elementary processes at semiconductor/electrolyte interfaces: Perspectives and limits of electron spectroscopy. Applied Surface Science, 252(1), 31-42. doi: 10.1016/j.apsusc.2005.01.110
McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-918. doi: 10.1037/0033-2909.86.5.889
Miura, S., Ravasio, P., & Sugimoto, M. (2010). Situated Learning with SketchMap. Interaction Technology Laboratory, Department of Frontier Informatics. The University of Tokyo, Tokyo.
Moore, E., Utschig, T. T., Haas, K. A., Klein, B., Yoder, P. D., Zhang, Y., & Hayes, M. H. (2008). Tablet PC technology for the enhancement of synchronous distributed education. Ieee Transactions on Learning Technologies, 1(2), 105-116.
Muller, D. A., Bewes, J., Sharma, M. D., & Reimann, P. (2008). Saying the wrong thing: improving learning with multimedia by including misconceptions. Journal of Computer Assisted Learning, 24(2), 144-155. doi: 10.1111/j.1365-2729.2007.00248.x
Murray, O., & Olcese, N. (2011). Teaching and learning with iPads, ready or not? TechTrends, 55(6), 42-48. doi: 10.1007/s11528-011-0540-6
O’Malley, P. J. (2010). Combining a Tablet personal computer and screencasting for chemistry teaching. New Directions(6), 64-67.
Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning, 3(1), 1-10.
Olympiou, G., Zacharias, Z., & deJong, T. (2013). Making the invisible visible: enhancing students' conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41(3), 575-596. doi: 10.1007/s11251-012-9245-2
Osborne, R. J., & Wittrock, M. C. (1983). Learning science: A generative process. Science Education, 67(4), 489-508.
Oswald, D. (2011). Ideation and design of novel iPad Apps: A design education case study. Paper presented at the Proceedings of the 13th International Conference on Engineering and Product Design Education E&PDE11.
Pallrand, G. J., & Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching, 21(5), 507-516. doi: 10.1002/tea.3660210508
Pellegrino, J. W., Alderton, D. L., & Shute, V. J. (1984). Understanding spatial ability. Educational Psychologist, 19(4), 239-253. doi: 10.1080/00461528409529300
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
Prescott, A., & Mitchelmore, M. (2005, July). Teaching projectile motion to eliminate misconceptions. Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education. Melbourne, Australia: University of Melbourne Press.
Pribyl, J. R., & Bodner, G. M. (1987). Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 24(3), 229-240. doi: 10.1002/tea.3660240304
Ramasundaram, V., Grunwald, S., Mangeot, A., Comerford, N. B., & Bliss, C. M. (2005). Development of an environmental virtual field laboratory. Computer Education, 45(1), 21-34. doi: 10.1016/j.compedu.2004.03.002
Rogers, J. W., & Cox, J. R. (2008). Integrating a Single Tablet PC in Chemistry, Engineering, and Physics Courses. Journal of College Science Teaching, 37(3), 34-39.
Roschelle, J., Tatar, D., Chaudhury, S. R., Dimitriadis, Y., Patton, C., & DiGiano, C. (2007). Ink, improvisation, and interactive engagement: Learning with tablets. IEEE Computer Society, 40(9), 42-48.
Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604-614. doi: 10.1037/0022-0663.93.3.604
Smetana, L. K., & Bell, R. L. (2011). Computer Simulations to Support Science Instruction and Learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370. doi: 10.1080/09500693.2011.605182
Smith , I. J. P., diSessa, A. A., & Roschelle, J. (1994). Misconceptions Reconceived: A Constructivist Analysis of Knowledge in Transition. Journal of the Learning Sciences, 3(2), 115-163. doi: 10.1207/s15327809jls0302_1
Sortor, J. M., & Kulp, M. T. (2003). Are the Results of the Beery-Buktenica Developmental Test of Visual-Motor Integration and Its Subtests Related to Achievement Test Scores? Optometry & Vision Science, 80(11), 758-763.
Stumpf, H., & Eliot, J. (1999). A structural analysis of visual spatial ability in academically talented students. Learning and Individual Differences, 11(2), 137-151. doi: 10.1016/S1041-6080(00)80002-3
Swaak, J., & de Jong, T. (2001). Discovery simulations and the assessment of intuitive knowledge. Journal of Computer Assisted Learning, 17(3), 284-294. doi: 10.1046/j.0266-4909.2001.00183.x
Trey, L., & Khan, S. (2008). How science students can learn about unobservable phenomena using computer-based analogies. Computers & Education, 51(2), 519-529.
Trundle, K., & Bell, R. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54(4), 1078-1088. doi: 10.1016/j.compedu.2009.10.012
Uzoglu, M., & Bozdogan, A. E. (2012). An examination of Preservice Science Teachers' views related to use of tablet PCs in science and technology course in terms of different variables. Mevlana International Journal of Education, 2(1).
Veermans, K., Joolingen, W. v., & de Jong, T. (2006). Use of Heuristics to Facilitate Scientific Discovery Learning in a Simulation Learning Environment in a Physics Domain. International Journal of Science Education, 28(4), 341-361. doi: 10.1080/09500690500277615
Vogel, J. J., Vogel, D. S., Janbowers, C.-B., Muse, C. A., & Michelle, K. (2006). Computer gaming and interactive simulations for learning: A meta-analysis. Journal of Educational Computing Research, 34(3), 229-243.
Vogel, S. A. (1990). Gender Differences in Intelligence, Language, Visual-Motor Abilities, and Academic Achievement in Students with Learning Disabilities: A Review of the Literature. Journal of Learning Disabilities, 23(1), 44-52. doi: 10.1177/002221949002300111
White, R., & Gunstone, R. (1992). Probing Understanding. London, England: Falmer.
Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P., & Lee, Y.-L. (2006). Learning oceanography from a computer simulation compared with direct experience at sea. Journal of Research in Science Teaching, 43(1), 25-42. doi: 10.1002/tea.20097
Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821-842. doi: 10.1002/tea.1033
Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., & Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41-49. doi: 10.1016/j.compedu.2012.10.024
Yang, E.-m., Andre, T., Greenbowe, T. J., & Tibell, L. (2003). Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education, 25(3), 329-349. doi: 10.1080/09500690210126784
Yilmaz, H. B. (2009). On the development and measurement of spatial ability. International Electronic Journal of Elementary Education, 1(2), 83-96.
Zacharia, Z., & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of physics. American Journal of Physics, 71(6), 618-629. doi: 10.1119/1.1566427