簡易檢索 / 詳目顯示

研究生: 葉美君
Mei-Chun Yeh
論文名稱: Fe(Se,Te)超導材料之光譜性質研究
Optical properties of Fe(Se,Te) superconducting materials
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 123
中文關鍵詞: FeSe鐵基超導體光譜性質
英文關鍵詞: FeSe, Iron-based Superconductors, Optical properties
論文種類: 學術論文
相關次數: 點閱:182下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究Fe(Se,Te)超導材料的光譜性質,樣品包含FeSe單晶、FeSe薄膜及Fe1.05Se0.447Te0.553單晶,其中,以脈衝雷射成長c軸取向FeSe薄膜於(100)MgO基板,膜厚約為300 nm,超導相轉變溫度約為7.6 K。FeSe與Fe1.05Se0.447Te0.553單晶則為(001)晶面,超導相轉變溫度分別為8 K與12.5 K。
    首先,我們測量室溫橢圓偏光光譜,觀察到FeSe單晶樣品具有4個吸收峰,分別為1.7 eV、2.7 eV、4.0 eV及6.2 eV。1.7 eV吸收峰對應Fe2+在3d軌域的d-d 電子躍遷;2.7 eV、4.0 eV及6.2 eV則為Se 4p到Fe 3d的電子躍遷。對照FeSe單晶,FeSe薄膜清楚觀察到1.7 eV及6.2 eV吸收峰,Fe1.05Se0.447Te0.553單晶則以1.7 eV、2.7 eV及6.2 eV吸收峰較明顯。我們推論對應FeSe單晶相近頻率的吸收峰位置,其吸收峰之電子躍遷行為與FeSe單晶相同。
    其次,我們研究FeSe薄膜的拉曼散射光譜,其顯示4個拉曼峰,頻率位置為107 cm-1、180 cm-1、192 cm-1和238 cm-1,分別對應Eg(1)、A1g、B1g及Eg(2) 振動模,高頻 2300 cm-1 B1g對稱性拉曼峰屬於雙磁振子激發。隨著溫度的升高,A1g與B1g振動模約在475 K以上消失,550 K時,FeSe薄膜完全轉變為α-Fe2O3。相較之下,隨著溫度的降低,在低溫8 K、90 K、220 K三個溫度點皆觀察到拉曼峰值位移量的改變。A1g與B1g對稱性拉曼峰於220 K藍移量開始減緩,推測與短程有序軌道 (或電荷) 有關;接著在結構相轉變溫度90 K處,再一次有藍移量緩和發生;我們於超導相轉變溫度8 K,觀察到拉曼峰值有紅移現象。再者,B1g拉曼峰在室溫與低溫6 K之位移變化量高達8 cm-1,與A1g拉曼峰的位移量1.2 cm-1有明顯差距。B1g拉曼峰的頻率位移量異常現象與聲子-自旋耦合效應有關,隨著溫度的降低,Fe2+由高自旋態轉變為低自旋態,穩定的低自旋態導致系統的總能量下降,晶格結構更穩定,鍵能增強,藍移展現明顯。
    最後,我們量測Fe1.05Se0.447Te0.553單晶的低溫拉曼散射光譜,並與FeSe薄膜相比較,發現同樣在三個溫度點:240 K、90 K(結構相轉變)、12.5 K(超導相轉變) 拉曼峰頻率位移量改變。然而,B1g與A1g拉曼峰在室溫與低溫的位移變化量沒有明顯差距,我們推測取代的Te離子改變Fe2+系統自旋狀態。

    We present spectroscopic ellipsometry and Raman-scattering measurements of superconducting Fe(Se,Te) materials. The c-axis oriented FeSe thin films with thickness of 300 nm were deposited on the MgO substrates using pulsed laser deposition. Its superconducting transition temperature is about 7.6 K. FeSe and Fe1.05Se0.447Te0.553 single crystals with (001) orientation show the superconducting transition temperatures at about 8 K and 12.5 K.
    First, the absorption spectrum of FeSe single crystal determined from spectroscopic ellipsometry analysis shows four bands at about 1.7, 2.7, 3.9, and 6.2 eV. The optical absorption near 1.7 eV is due to on-site Fe2+ d-d excitations. Other high energy peaks above 2 eV are associated with the charge-transfer transitions between Se 4p and Fe 3d states. Corresponding FeSe single crystal, FeSe thin films was observed 1.7 eV and 6.2 eV absorption peak, and Fe1.05Se0.447Te0.553 single crystal was observed with 1.7, 2.7, and 6.2 eV absorption peak, and the electronic transitions with the same behavior corresponding to FeSe single crystals.
    Second, room-temperature Raman-scattering spectrum of FeSe thin film exhibits four phonon modes at about 107, 180, 192, and 238 cm-1, displaying symmetries of Eg(1), A1g, B1g, and Eg(2), respectively. Furthermore, the B1g excitation peak near 2300 cm-1 is associated with two-magnon scattering. Additionally, with increasing temperature, A1g and B1g phonon modes disappear above 475 K. At 550 K, Raman-scattering spectrum transfers to that of α-Fe2O3. In contrast to high temperature Raman-scattering spectra, A1g and B1g phonon modes exhibit anomalies with decreasing temperature in frequency at 220, 100, and 8 K that coincide with the onset of short-range charge and/or orbital orders, structural and superconducting phase transitions. Notably, a very large hardening (~ 8 cm-1) of the B1g phonon mode is possibly due to spin-phonon coupling. With decreasing temperature, Fe2+ ions change from the high spin state into low spin state.
    Finally, temperature-dependent Raman-scattering spectra of Fe1.05Se0.447Te0.553 single crystal show similar phonon anomalies at 240, 90, and 12.5 K. Interestingly, no large hardening of the B1g phonon mode can be seen, suggesting the Te doping disrupts the spin state transitions in Fe2+ ions.

    致謝 …………………………………………………………… i 中文摘要 …………………………………………………………ii 英文摘要 …………………………………………………………iv 目錄 ……………………………………………………………… vi 圖目錄 ……………………………………………………………viii 表目錄 ……………………………………………………………xvi 第一章 緒論 …………………………………………………………1 第二章 歷史背景與文獻回顧 …………………………………6 2-1 超導體的研究發展 …………………………………………6 2-2 Fe(Se,Te)超導材料的光譜特性 ……………………8 第三章 實驗儀器設備及原理 …………………………………25 3-1 光譜儀系統 ……………………………………………………25 3-2 原理介紹 ………………………………………………………28 第四章 實驗樣品特性 …………………………………………43 4-1 樣品製程 ………………………………………………………43 4-2 樣品物性 ……………………………………………………… 43 第五章 實驗結果與討論 …………………………………………51 5-1 Fe(Se,Te)材料的橢圓偏振光譜 ………………………51 5-2 FeSe薄膜的拉曼散射光譜 ……………………………54 5-3 Fe1.05Se0.553Te0.447單晶的拉曼散射光譜 …63 第六章 結論與未來展望 ………………………………………116 參考文獻 ……………………………………………………………118

    [1]M. J. Chiu, Y. F. Chen, T. F. Chen, S. Y. Yang, F. P. G. Yang, T. W. Tseng, J. J. Chieh, J. Chun, R. Chen, K. Y. Tzen, M. S. Hua, and H. E. Horng, “Plasma tau as a window to the brain—negative associations with brain volume and memory function in mild cognitive impairment and early alzheimer’s disease”, Human Brain Mapping (2013). (accepted)
    [2]http://finance.people.com.cn/BIG5/n/2014/0416/c348883-24901029-2.html
    [3]http://www.chinatimes.com/newspapers/20140514000921-260309
    [4]M. K. Wu, J. R. Ashburn, and C. J. Torng, “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure”, Phys. Rev. Lett. 58, 9, 908 (2008).
    [5]Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H.Yanagi, T. Kamiya, and H. Hosono, “Iron-based layered superconductor: LaOFeP”, J. Am. Chem. Soc. 128, 31, 10012 (2006).
    [6]T. K. Chen, C. C. Changa, H. H. Chang, A. H. Fanga, C. H. Wanga, W. H. Chaoa, C. M. Tsenga, Y. C. Lee, Y. R. Wua, M. H. Wena, H. Y. Tangd, F. R. Chena, M. J. Wang, M. K. Wu, and D. V. Dyck, “Fe-vacancy order and superconductivity in tetragonal β-Fe1-xSe”, PNAS, 111, 63 (2014).
    [7]J. Paglione and R. L. Greene, “High-temperature superconductivity in iron-based materials”, Nat. Phys. 6, 645 (2010).
    [8]H. K. Onnes, “The resistance of pure mercury at helium temperature”, Commum. Phys. Lab. Univ. Leiden 12, 120 (1911).
    [9]J. Matricon, G. Waysand, and C. Glashausser, The cold wars: a history of superconductivity, Rutgers University Press, 2003.
    [10]J. G. Bendorz and K. A. Müller, “Possible high Tc superconductivity in the Ba-La-Cu-O system”, Z. Phys. B 64, 189 (1986).
    [11]K. Numata, K. Mori, H. Yamamoto, H. Sekine, K. Inoue, and H. Maeda, “Metallurgical studies and optimization of sintering for the Bi‐Sr‐Ca‐Cu‐O superconductors”, J. Appl. Phys. 64, 6392 (1988).
    [12]G. S. Grader, E. M. Gyorgy, L. G. Van Uitert, W. H. Grodkiewicz, T. R. Kyle, and M. Eibschutz. “Persistent currents in Tl‐Ba‐Ca‐Cu‐O superconductors”, Appl. Phys. Lett. 53, 319 (1988).
    [13]J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, “Superconductivity of metallic boron in MgB2”, Phys. Rev. Lett. 86, 20, 4656 (2001).
    [14]P. W. Stephences, L. Mihaly, P. L. Lee, R. L. Whetten, S. M. Huang, R. Kaner, F. Deiderich, and K. Holczer , “Structure of single-phase superconducting K3C60”, Nature 351, 632 (1991).
    [15]Y. Kamihara, T. Watance, and M. Hirano, “Iron-based layered superconductor La(O1-xFx)FeAs (x = 0.05 ~ 0.12) with Tc = 26 K”, J. Am. Chem. Soc. 130, 3296 (2008).
    [16]M. Rotter, M. Tegel, and D. Johrendt, “Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2”, Phys. Rev. Lett. 101, 107006 (2008).
    [17]X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, “The superconductivity at 18 K in LiFeAs system”, Solid State Commun. 148, 538 (2008).
    [18]F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, “Superconductivity in the PbO-type structure α-FeSe”, Proc. Natl. Acad. Sci. USA, 105, 14262 (2008).
    [19]N. Katayama, S. Ji, D. Louca, S. Lee, M. Fujita, T. J. Sato, J. Wen, Z. Xu, G. Gu, G. Xu, Z. Lin, M. Enoki, S. Chang, K. Yamada, and J. M. Tranquada, “Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe1+ySexTe1-x”, J. Phys. Soc. Jpn. 79, 113702 (2010).
    [20]D. L. A. D. Faria, S. V. Silva, and M. T. D. Oliveira, “Raman microspectroscopy of some iron oxides and oxyhydroxides”, J. Raman Spectrosc. 28, 873 (1997).
    [21]M. K. Wu, M. J. Wang, and K. W. Yeh, “Recent advances in β-FeSe1−x and related superconductors”, Sci. Technol. Adv. Mater. 14, 014402 (2013).
    [22]Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, “Superconductivity at 27 K in tetragonal FeSe under high pressure”, Appl. Phys. Lett. 93, 152505 (2008).
    [23]S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser. “Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure”, Nat. Mat. 8, 630 (2009).
    [24]T. W. Huang, C. M. Lin, H. S. Sheu, T. L. Hung, K. W. Yeh, P. C. Hsu, Y. L. Huang, F. C. Hsu, and M. K. Wu, “Raman and X-ray diffraction studies of superconducting FeSe under pressure”, Physica C 470, 502 (2010).
    [25]M. J. Wang, J. Y. Luo, T. W. Huang, H. H. Chang, T. K. Chen, F. C. Hsu, C. T. Wu, P. M. Wu, A. M. Chang, and M. K. Wu, “Crystal orientation and thickness dependence of the superconducting transition temperature of tetragonal FeSe1-x thin films”, Phys. Rev. Lett. 103, 117002 (2009).
    [26]R. S. Kumar, Y. Zhang, Y. Xiao, J. Baker, A. Cornelius, S. Veeramalai, P. Chow, C. Chen, and Y. Zhao, “Pressure induced high spin-low spin transition in FeSe superconductor studied by x-ray emission spectroscopy and ab initio calculations”, Appl. Phys. Lett. 99, 061913 (2011).
    [27]Y. C. Wen, K. J. Wang, H. H. Chang, J. Y. Luo, C. C. Shen, H. L. Liu, C. K. Sun, M. J.Wang, and M. K. Wu, “Gap opening and orbital modification of superconducting FeSe above the structural distortion”, Phys. Rev. Lett. 108, 267002 (2012).
    [28]C. W. Luo, I. H. Wu, P. C. Cheng, J. Y. Lin, K. H. Wu, T. M. Uen, J. Y. Juang, T. Kobayashi, D. A. Chareev, O. S. Volkova, and A. N. Vasiliev, “Quasiparticle dynamics and phonon softening in FeSe superconductors”, Phys. Rev. Lett. 108, 257006 (2012).
    [29]C. S. Lopes, C. E. Foerster, F. C. Serbena, P. R J´unior, A. R. Jurelo, J. L. P. Jounior, P. Pureur, and A. L. Chinelatto, “Raman spectroscopy of highly oriented FeSe0.5Te0.5 superconductor”, Supercond. Sci. Technol. 25, 025014 (2012).
    [30]V. Gnezdilov, Y. G. Pashkevich, P. Lemmens, D. Wulferding, T. Shevtsova, A. Gusev, D. Chareev, and A. Vasiliev, “Interplay between lattice and spin states degree of freedom in the FeSe superconductor: Dynamic spin state instabilities”, Phys. Rev. B 87, 144508 (2013).
    [31]鄧勃、宁永成、劉密新著,儀器分析,清華大學出版社,民國八十年五月,第一版。
    [32]卓文中,NaxCoO2 (x = 0.68 and 0.75) 薄膜劣質化效應之光譜性質研究,國立臺灣師範大學物理研究所碩士論文,民國九十八年六月。
    [33]H. Kuzmany, “Solid-State Spectroscopy”, Springer-Verlag Berlin Heidelberg (1998).
    [34]J. Y. Lin, Y. S. Hsieh, D. A. Chareev, A. N. Vasiliev, Y. Parsons, and H. D. Yang, “Coexistence of isotropic and extended s-wave order parameters in FeSe as revealed by low-temperature specific heat”, Phys. Rev. B 84, 220507(R) (2011).
    [35]K. W. Yeh, C. T. Ke, T. W. Huang, T. K. Chen, Y. L. Huang, P. M. Wu and M. K. Wu, “Superconducting FeSe1−xTex single crystals grown by optical zone-melting technique”, Crystal Growth & Design, 9, 11, 4847 (2009).
    [36]O. Kim and M. Granath, “Lattice expansion from isotope substitution in iron-based superconductors”, Phys. Rev. B 84, 092507 (2011).
    [37]A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, “Density functional study of FeS, FeSe, and FeTe: electronic structure, magnetism, phonons, and superconductivity”, Phys. Rev. B 78, 134514 (2008).
    [38]T. Miyake, K. Nakamura, R. Arita, and M. Imada, “Comparison of ab initio low-energy models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe: electron correlation and covalency”, J. Phys. Soc. Jpn. 79, 4, 044705 (2010).
    [39]P. G. Klemens, “Anharmonic decay of optical phonons”, Phys. Rev. 148, 845 (1966).
    [40]P. Kumar, S. Saha, D. V. S. Muthu, J. R. Sahu, A. K. Sood, and C. N. R. Rao, “Raman evidence for orbiton-mediated multiphonon scattering in multiferroic TbMnO3”, J. Phys. Condens. Matter 22, 115403 (2010).
    [41]謝怡姍,鐵基超導體FeSe及Ba(Fe1-xCox)2As2的比熱研究,國立交通大學物理研究所碩士論文,民國一OO年六月。
    [42]T. Imai, K. Ahilan, F. L. Ning, T. M. Mcqueen, and R. J. Cava, “Why does undoped FeSe become a high-Tc superconductor under pressure?”, Phys. Rev. Lett. 102, 177005 (2009).
    [43]T. L. Xia, D. Hou, S. C. Zhao, A. M. Zhang, G. F. Chen, J. L. Luo, N. L. Wang, J. H. Wei, Z. Y. Lu, and Q. M. Zhang, “Raman phonons of α-FeTe and Fe1.03Se0.3Te0.7 single crystals”, Phys. Rev. B 79, 140510 (R) (2009).
    [44]Y. J. Um, A. Subedi, P. Toulemonde, A. Y. Ganin, L. Boeri, M. Rahlenbeck, Y. Liu, C. T. Lin, S. J. E. Carlsson, A. Sulpice, M. J. Rosseinsky, B. Keimer, and M. L. Tacon, “Anomalous dependence of c-axis polarized Fe B1g phonon mode with Fe and Se concentrations in Fe1+yTe1−xSex”, Phys. Rev. B 85, 064519 (2012).
    [45]F. Ma, W. Ji, J. Hu, Z. Y. Lu, and T. Xian, “First-principles calculations of the electronic structure of tetragonal α-FeTe and FeSe crystals: Evidence for a bicollinear antiferromagnetic order”, Phys. Rev. Lett. 102, 177003 (2009).
    [46]程光煦著,拉曼 布里淵散射,科學出版社,民國九十六年,第二版。
    [47]P. Kumar, A. Kumar, S. Saha, D. V. S. Muthu, J. Patnaik, U. V. Waghmare, A. K. Ganguli, and A. K. Sood, “Anomalous Raman scattering from phonons and electrons of superconducting FeSe0.82”, Solid State Commun. 150, 557 (2010).
    [48]R. J. Deeth, “Molecular modelling for systems containing transition metal centres”, Springer (2010).
    [49]Z. Qin, C. O’Malley, K. Lo, T. Zhou, and S. W. Cheong, “Crystal field excitations in the Raman spectra of FeSe1-x”, Solid State Commun. 150, 768 (2010).
    [50]http://www.dlt.ncssm.edu/tiger/chem8.htm
    [51]K. Okazaki, S. Sugai, S. Niitaka, and H. Takagi, “Phonon, two-magnon and electronic Raman scattering of Fe1+yTe1−xSex”, Phys. Rev. B 83, 035103 (2011).
    [52]林宜霖,以拉曼散射光譜研究Sr2Y(Ru1-xCux)O6與Fe(Se,Te) 超導材料之晶格-電荷-自旋多重耦合效應,國立臺灣師範大學物理研究所碩士論文,民國一O一年六月。
    [53]蔡一銘,超導材料Fe(Se,Te) 系統之拉曼散射光譜研究,國立臺灣師範大學物理研究所碩士論文,民國九十九年六月。

    下載圖示
    QR CODE