簡易檢索 / 詳目顯示

研究生: 羅安鈞
論文名稱: 俯視型行人計數系統
A People Counter Using Top-view Video Sequences
指導教授: 陳世旺
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 90
中文關鍵詞: 行人計數Level Set粒子濾波器
論文種類: 學術論文
相關次數: 點閱:225下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的是發展出能計算區域範圍內經過的行人數之系統,利用攝影機模擬人工觀測的方式,取得所需的監測影像序列。本系統分為行人偵測和行人計數兩大部分,行人偵測主要工作為前景(foreground)擷取,行人計數的工作則為行人追蹤及計數。
    在行人偵測中,最常遭遇的問題就是光影的變化及影像的雜訊,所以我們提出利用兩張連續影格的物件偵測方法,用較短時間差來減少光線影響,並使用較不受影像中雜訊影響的邊緣作為物件邊界,最後由邊緣及注意力區域將物件的邊界以Level Set方式封閉取出,使得影像中的行人區塊擷取出來。
    在行人計數中,為了解決行人區塊彼此之間重疊合併或分裂以及不同攝影機架設角度下行人區塊形狀多變的問題,我們使用粒子濾波器(particle filter)進行行人的追蹤。粒子濾波器藉由同時提出多種假設並藉由統計算出運動模型來預測出移動物體的位置及形狀等狀態。本實驗中利用橢圓來代表粒子濾波器中的行人狀態,並使用橢圓的中心位置、大小、形狀、顏色等為特徵,量測出粒子與所追蹤行人區塊特徵值之間的相似程度(likelihood),以更新每個粒子的權重值,再由計算粒子之期望值狀態,作為行人追蹤結果。之後我們將行人區塊依照其追蹤過程,定義成不同的行進狀態(state),藉由狀態之間的轉換,進行行人數量統計。
    由各種行人之間分裂合併測試,以及雨天、晴天、夜晚、和長時間高行人流量等各種環境實驗結果得知,本研究所提出之技術對於快速移動及物體大小改變顯著之行人,均有良好的追蹤效果。

    In this thesis, we propose a bi-directional people counting system based on top-view video sequences. The system is divided into two sub-systems: people detection and people tracking. For people detection, we extract foreground object by two features of object: attention region and the boundary between objects and background. The attention region is generated by motion detection. Since people may stay at same location, our system should consider the stopping objects into attention region. Then we can use level set method to extract the objects. For people counting, we use particle filter to tracking objects to solve object merge-split problem. Each particle is represented by an ellipse. One object is tracking by a set of particles. The likelihood function of the particle weight is defined by location, color, and shape style. Using expect state to be output of our system. Then we use the tracking result to count number of people. Our system has been tested in different lighting conditions (e.g. weather, time, and environment) and using video sequences catching from different camera types (e.g. ordinary, and fish eye cameras) to show the robust of system.

    目 錄 第一章 簡介……………………………………………………………1 1.1 研究背景....…………………………………………………….1 1.2 研究目的……………………………………………………….3 1.3 文獻探討……………………………………………………….5 1.4 論文架構……………………………………………………...10 第二章 系統架構……………………………………………………..11 2.1 系統設置……………………………………………………11 2.2 系統運作…………………………………………………… 13 第三章 行人偵測……………………………………………………..16 3.1 前處理……………………………………………………….17 3.1.1 Canny邊緣偵測…………………………………………17 3.1.2背景邊緣影像的建立……………………………………21 3.2 注意力區域偵測……………………………………………..22 3.3 前景物擷取…………………………………………………..25 3.3.1物件邊緣偵測……………………………………………25 3.3.2收縮邊界…………………………………………………26 3.4 暫時停滯物決定……………………………………………..30 第四章 行人計數……………………………………………………...33 4.1 粒子濾波器簡介……………………………………………..33 4.2 行人追蹤……………………………………………………..35 4.3 實作粒子濾波器追蹤單一行人……………………………..41 4.4 相似程度及定義……………………………………………..47 4.4.1距離相似程度定義………………………………………47 4.4.2形狀大小相似程度定義…………………………………51 4.4.3色彩相似程度定義………………………………………52 4.5 粒子濾波器用於多個行人追蹤……………………………..55 4.6 行人數量統計………………………………………………..58 第五章 實驗成果……………………………………………………...61 5.1 行人區塊的合併與分裂……………………………………..61 5.2 各種場景環境測試…………………………………………..68 5.3 高行人流量環境測試………………………………………..72 第六章 結論及未來方向……………………………………………...77 6.1 結論……………………………………………………………77 6.2 未來方向………………………………………………………78 附錄 參考文獻

    [Alb01] A. Albiol, I. Mora ,and V. Naranjo, “Real-time high density people counter using morphological tools,” IEEE Trans. on Intelligent Transportation Systems, Vol. 2 , No. 4 , pp.204 – 218, 2001.

    [Bes03] J. Bescos, J.M. Menendez ,and N. Garcia, “DCT based segmentation applied to a scalable zenithal people counter,” Proc. International Conference on Image Processing, Vol. 3, pp. III - 1005-8 vol.2, 2003.

    [Bro00] A. Broggi, M. Bertozzi, A. Fascioli ,and M. Sechi, "Shape-based pedestrian detection," Proc. the IEEE on Intelligent Vehicles Symposium IV, pp.215 - 220, 2000.

    [Che03] Thou-Ho Chen, ” An Automatic Bi-Directional Passing-People Counting
    Method Based on Color Image Processing,” Proc. IEEE 2003 International Carnahan Conference on Security Technology , pp.200 – 207,2003.

    [Che05] Maolin Chen, Gengyu Ma ,and Seokcheol Kee, ” Pixels Classification for Moving Object Extraction,” IEEE Workshop on Motion and Video Computing, WACV/MOTIONS '05, Vol. 2, pp.44 – 49 ,2005.

    [Che06] Thou-Ho Chen, Tsong-Yi Chen ,and Zhi-Xian Chen, “An Intelligent People-Flow Counting Method for Passing Through a Gate,” IEEE Conference on Robotics, Automation and Mechatronics , pp.1 – 6, 2006.

    [Che07]Ming-Hsu Cheng, Meng-Fen Ho ,and Chung-Lin Huang, “Gait Analysis for Human Identification through Manifold Learning and HMM,” IEEE International Symposium on Circuits and Systems ,ISCAS 2007, pp. 969 – 972,2007.

    [Cho06] Jung-Uk Cho, Seung-Hun Jin, Xuan-Dai Pham, Jae-Wook Jeon, Jong-Eun Byun ,and Hoon Kang, “A Real-Time Object Tracking System Using a Particle Filter,” 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems pp.2822 – 2827,2006.

    [Dai00] D. J. Dailey, F. W. Cathey ,and S. Pumrin, "An Algorithm to Estimate Mean Traffic Speed Using Un-Calibrated Cameras," IEEE Trans. on Intelligent Transportation Systems, vol. 1, no. 2, pp. 98–107, 2000.

    [Fou03] C.Fouard, "Automatic Calculation of Chamfer Mask Coefficients for Large Masks and Anisotropic Images," INRIA, pp.7-10 , 2003.

    [Har99] I. Haritaoglu, D. Harwood ,and L.S. Davis, “Hydra: multiple people detection and tracking using silhouettes,” Proc. International Conference on Image Analysis and Processing, pp.280 – 285, 1999.

    [Hua02] D. Huang, T.W.S. Chow ,and W.N. Chau, “Neural network based system for counting people,” IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference] , Vol. 3 , pp. 2197 - 2201,2002.

    [Hsi07]Jun-Wei Hsieh, Chuang-Yu Huang, Cheng-Shuang Peng ,and Kuo-Chin Fan “GRID-BASED TEMPLATE MATCHING FOR PEOPLE COUNTING,” Proc. of the 20th IPPR Conf. on CVGIP, Mauli, Taiwan, 2007.

    [Isa96]Michael Isard ,and Andrew Blake ”Contour tracking by stochastic propagation of conditional density,” Proc. European Conference on Computer Vision, vol. 1, pp. 343--356, 1996.

    [Jae] Ae-Won Kim, Kang-Sun Choi, Byeong-Doo Choi ,and Sung-Jea Ko, “Real-time Vision-based People Counting System for the Security Door,” Department of Electronics Engineering,Korea University, Anam-dong, Sungbuk-ku, Seoul,pp. 136-701, Korea.

    [Jam99] Sethian, and James “A Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science,” (2nd ed.). Cambridge University Press. ISBN 0-521-64557-3.4., 1999.

    [Kom00] I. Kompatsiaris, G. Mantzaras ,and M.G. Strintzis, “Spatiotemporal segmentation and tracking of objects in color image sequences”, Proc. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on Circuits and Systems, vol.5 , pp.29 - 32, 2000.

    [Lai98] A.H.S. Lai ,and N.H.C Yung, “A fast and accurate scoreboard algorithm for estimating stationary backgrounds in an image sequence,” ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, Vol. 4 , pp.241 - 244 , 1998.

    [Lin01] G. Linda Shapiro ,and C. George Stockman, “Computer Vision” by Prentice Hall Chap.10.1.1 Clustering Methods ,pp.281-282,2001

    [Mag07] E. Maggio, F. Smerladi, and A. Cavallaro, “Adaptive Multifeature Tracking in a Particle Filtering Framework,” IEE Trans. On Circuits and Systems for Video Technology, vol. 17, no. 10, pp. 1348-1359, 2007

    [Mas01] Masoud, O., Papanikolopoulos, and N.P.”A novel method for tracking and counting pedestrians in real-time using a single camera,” IEEE Transactions on Vehicular Technology, vol. 50, no. 5, pp. 1267 – 1278, 2001.

    [Ter99]K.Terada, ” A Method of Counting the Passing People by Using the Stereo Images,” Proc. 1999 International Conference on Image Processing,
    vol.2, pp.:338 – 342, 1999.

    [Tan07] Yu-Gin Tang, Jiann-der Lee ,and Li-Chang Liu “AN EMBEDDED SYSTEM FOR VEHICLE TYPE RECOGNITION” Proc. of the 20th IPPR Conf. on CVGIP, Mauli, Taiwan, 2007.

    [Wan07] J. M. Wang, S. W. Chen, S. Cherng , and C. S. Fuh, “People Counting Using Fisheye Camera,” Proceeding. of the 20th IPPR Conf. on CVGIP, Mauli, Taiwan, 2007.

    [Xia95] Xiaowei Zhang ,and G. Sexton, “A new method for pedestrian counting,” Fifth International Conference on Image Processing and its Applications , pp. 208 – 212, 1995.

    [Xia97] Xiaowei Zhang ,and G. Sexton, “Automatic human head location for pedestrian counting,” Sixth International Conference on Image Processing and Its Applications, vol.2, pp.535 – 540, 1997.

    [Yan03] Yang, D.B., Gonzalez-Banos, H.H., Guibas, and L.J. “Counting people in crowds with a real-time network of simple image sensors,” Proc. Ninth IEEE International Conference on Computer Vision, vol.1, pp. 122 - 129 ,2003.

    [Zha95] X. Zhang, and G. Sexton, “Automatic pedestrian counting using image processing techniques” Electronics Letters , vol. 31 , no. 11 , pp.863 – 865, 1995.

    [陳03] 陳重傑 “高層辦公建築火災避難安全評估之研究”中華大學 建築與都市計畫學系碩士班 國家圖書館全國博碩士論文 系統編號:92CHPI0224013,2003

    [沈93] 沈東石 “建築物內部人員交通系統緊急疏散效率之評估模型與應用”國立台灣大學 土木工程研究所 國家圖書館全國博碩士論文 系統編號:82NTU00015075,1993.

    [張 05] 張厥煒、張傑閔 “運動視訊場景中動態物件搜尋與追蹤方法”國立台北科技大學資訊工程系 臺北科技大學學報第四十之一期,2005.

    [鄭 05] 鄭皓盈 “使用Particle Filter之物體追蹤技術”工業技術研究院資訊與通訊研究所 第112期 電腦與通訊(CCL),2005.

    QR CODE