簡易檢索 / 詳目顯示

研究生: 陳庭慶
Chen, Ting-Qing
論文名稱: 量子點和鈣鈦礦二維材料之特性與應用
Properties and Applications of Quantum Dots and Two-dimensional Perovskite Materials
指導教授: 趙宇強
Chao, Yu-Chiang
口試委員: 陳建彰
Chen, Jian-Zhang
陳奕君
Cheng, I-Chun
趙宇強
Chao, Yu-Chiang
口試日期: 2021/07/12
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 61
中文關鍵詞: 量子點鈣鈦礦
英文關鍵詞: Quantum Dots, Perovskite
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100737
論文種類: 學術論文
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文共分三個部分:1.鈣鈦礦量子點-PCL(polycaprolactone)複合材料;2.CdSe量子點發光二極體的電洞注入層及電洞傳輸層之參雜;3.PbBr2及醋酸鉛二維晶體之研究。
    第一部分,我們合成CsPbBr3鈣鈦礦量子點,因為量子點具有量子侷限效應,所以我們藉由調控量子點粒徑大小得到460nm,到515nm光波長的CsPbBr3鈣鈦量子點。由於鈣鈦礦量子點在大氣下不易儲存,因此將量子點與高分子材料PCL混合,做出複合材料,研究結果顯示,由於我們用高分子材料包覆量子點,讓鈣鈦礦量子點在大氣環境下,能夠保存更久的時間。
    第二部分,我們使用全溶液製程製作CdSe的量子點發光二極體。在電洞注入層poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)參雜不同比例的P105分散劑,找到PEDOT:PSS參雜的最佳條件後,接著電洞傳輸層poly(9-vinylcarbazole)(PVK)參雜1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC)接著加上Bis[3,5-di(9H-carbazol-9-yl)phenyl]diphenylsilane (SimCP2),依序對這一系列參雜不同比例,觀察對發光二極體元件的影響。電洞注入層最佳參雜比例使表面粗糙度從3.1853nm下降到2.0144nm,而元件的量子效率也從2.23%達到3.33%,結果表明適當得參雜可以有效的改善元件載子的注入能力。
    最後,我將PbBr2及醋酸鉛在二氧化矽的基板上生長二維材料晶體,並改善製程,使得我可以得到較大或較薄的晶體,其中,醋酸鉛晶體可以長到約6um的六角形晶體,我使用AFM觀察其厚度,最薄到達20nm。接著,我使用其他材料(MABr、MAI)個別與兩種晶體反應,使我最後能得到鈣鈦礦的薄片晶體。

    Three materials were investigated in this research work: 1. perovskite nanocrystal−PCL composites; 2. organic materials for doping hole transporting layer; 3. PbBr2 and lead(II) acetate flakes.
    In the first part, CsPbBr3 perovskite nanocrystals were synthesized with various emission wavelength from 460 to 515 nm by controlling the diameter of the nanocrystals. To strengthen the air stability of the nanocrystals, polycaprolactone (PCL) was dissolved and blended with nanocrystals for the fabrication of perovskite nanocrystal-PCL composites. We demonstrated that the perovskite nanocrystal-PCL composites exhibited good air barrier property.
    In the second pert, the influence of the doping of hole transport material on the performance of quantum dots light-emitting diodes (QD-LEDs) was investigated. Commercial available P105 was blended with PEDOT:PSS. The surface roughness of PEDOT:PSS was decreased from 3.1853nm to 2.0144nm after molecule doping. 1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and Bis[3,5-di(9H-carbazol-9-yl)phenyl]diphenylsilane (SimCP2) were doped into poly(n-vinylcarbazole) (PVK). Device performance could be enhanced once the doping ratio was optimized. The external quantum efficiency of QD-LEDs was increased from 2.23% to 3.33%. These results showed that hole injection can be improved via molecule doping.
    Finally, PbBr2 and lead(II) acetate flakes were prepared on Si/SiO2 substrates. Experimental conditions were controlled to get flakes with large area or thin thickness. The diameter and thickness of the flakes of ~6 um and 20 nm were obtained, respectively. By reacting flakes with methylammonium iodide or methylammonium bromide, perovskite flakes were obtained.

    Chapter 1 緒論 1 1-1前言 1 1-2量子點 2 1-3 鈣鈦礦 4 1-4二維材料 6 1-5研究動機與目的 7 Chapter 2 原理 8 2-1奈米材料 8 2-2半導體發光機制 11 2-3發光二極體 13 Chapter 3 實驗製程 16 3-1 鈣鈦礦量子點合成 16 3-1-1 熱注入合成 16 3-1-2 差溶劑合成 17 3-1-3 高分子材料包覆 17 3-1-4 合成材料 18 3-2 發光二極體元件製程 20 3-2-1 ITO 圖案化 20 3-2-2 旋塗製程 21 3-2-3 熱蒸鍍 23 3-2-4 ZnO 合成 24 3-2-5 元件製程材料 25 3-3 鈣鈦礦奈米薄片製程 27 3-3-1 蒸發長晶 27 3-3-2 旋塗長晶 28 3-3-3 鈣鈦礦轉換 28 3-3-4 長晶材料 29 3-4 實驗器材 30 3-5 量測儀器 32 Chapter 4 研究結果與討論 34 4-1鈣鈦礦量子點複合材料 34 4-1-1 FAPbBr3量子點與PCL複合材料螢光分析 34 4-1-2 CsPbBr3量子點螢光分析 36 4-1-3 CsPbBr3量子點與PCL複合材料螢光分析 37 4-2 CdSe紅光量子點發光二極體 39 4-2-1 元件結構圖 39 4-2-2 電洞注入層參雜之分析 40 4-2-3 電洞傳輸層參雜之分析 43 4-2-3-1 PVK參雜TAPC之影響 43 4-2-3-2 PVK參雜TAPC及SimCP2之影響 45 4-2-3-3 PVK參雜AFM粗糙度分析 47 4-3 奈米薄片 48 4-3-1 PbBr2溶於水長晶之晶體圖 48 4-3-2 PbBr2溶於混合溶劑長晶之晶體圖 49 4-3-3 PbBr2轉換MAPbBr3分析 50 4-3-4 PbBr2轉換MAPbI3分析 51 4-3-5 醋酸鉛晶體圖 52 4-3-6 醋酸鉛轉換MAPbBr3分析 55 4-3-7 醋酸鉛轉換MAPbI3分析 56 Chapter 5 結論 57 參考文獻 59

    1. R.P. Feynman. The Pleasure of Finding Things Out. Cambridge,Massachusetts:Helix Books.(1999).
    2. A.I. Ekimov and A.A. Onushchenko. Quantum Size Effect in Three-dimensional Microscopic Semiconductor Crystals.JETP Lett.34,345-348. (1981).
    3. Al.L. Efros and A.L. Efros..Interband Absorptlon of Light in A Semiconductor Sphere.Sov.phys.Semicond,16,772-775. (1982)
    4. R. Rossetti,S. Nakahara and L.E. Brus. Quantum Size Effects in the Redox Potentials, Resonance Raman Spectra, and Electronic Spectra of CdS Crystallites in Aqueous Solution.J.Chem.Phys,79,1086.(1983).
    5. C.B. Murray,D.J. Norris and M.G. Bawendi. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites.J.Am.Chem.Soc.115,8706-8715. (1993).
    6. M.A. Hines and P. Guyot-Sionnest.(1996).Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals.J.Phys.Chem.,100,468-471.
    7. S. Ithurria and B. Dubertret. Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level. J.Am.Chem.Soc.130,16504-16505. (2008).
    8. 陳學仕。量子點技術與應用發展。奈米技術產業資訊,3,26-41. (2004).
    9. Wikipedia. Perovskite.Retrieved May 16,2021,from
    https://en.wikipedia.org/wiki/Perovskite (2021,May 6).
    10. BCC Research Editorial. A History of Perovskite Solar Cells. Retrieved May 16,2021,from
    https://www.bccresearch.com/market-research/energy-and-resources/perovskite-solar-cells-materials-fabrication-and-global-markets-report.html (2018,Mar 6).
    11. 黃松勳。二維材料的發展與應用進程。科技政策觀點。
    Retrieved from https://portal.stpi.narl.org.tw/index/article/10409 (2018,July 27)
    12. J.C. Blancon,J. Even,C.C. Stoumpos et al.Semiconductor Physics of Organic–inorganic 2D Halide Perovskites.Nature Nanotechnology,15,969-985. (2020)
    13. Y. Bekenstein,B.A. Koscher,S.W. Eaton et al. Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies.J.Am.Chem.Soc.137,16008-16011. (2015).
    14. C.L. Tai,W.L. Hong,Y.T. Kuo et al. Ultrastable, Deformable, and Stretchable Luminescent Organic− Inorganic Perovskite Nanocrystal−Polymer Composites for 3D Printing and White Light-Emitting Diodes.ACS Appl.mater.11,30176-30184. (2019).
    15. X. Dai,Z. Zhang,Y.Jin et al. Solution-processed, High-performance Light-emitting Diodes Based on Quantum Dots.Nature,515,96-99. (2014).
    16. H. Xiao,T. Liang and M. Xu.Growth of Ultraflat PbI2 Nanoflakes by Solvent Evaporation Suppression for High-Performance UV Photodetectors.Small.15,1901767. (2019).
    17. Wikipedia. Nanomaterials. Retrieved May 20,2021,from https://en.wikipedia.org/wiki/Nanomaterials (2021,May 9).
    18. 高逢時。奈米科技。科學發展,386,67-71. (2005).
    19. A.P. AlivisatosSemiconductor Clusters,Nanocrystals,and Quantum Dots.Science,271,933-9360(1996).
    20. 劉博文。光電元件導論,新北市,全威圖書有限公司. (2005).
    21. D.A. Neamen.微電子學(上),台中市,滄海書局. (2003).
    22. G. Han,L. Wang,C. Pei et al. Size-dependent Optical Properties and Enhanced Visible Light Photocatalytic Activity of Wurtzite CdSe Hexagonal Nanoflakes with Dominant {0 0 1} Facets. Journal of Alloys and Compounds,610,62-68. (2014).
    23. 楊孟璇。低溫濺鍍非晶向ZnO:Al薄膜之研究.國立中山大學物理學系研究所碩士論文,臺灣. (2009).
    24. J.Y. Zheng,H.G. Manning,Y. Zhang et al. Synthesis of Centimeter-size Free-standing Perovskite Nanosheets from Single-Crystal Lead Bromide for Optoelectronic Devices.Scientific Reports,9. (2019).
    25. R.B. Bryant,V.P. Chacko and M.C. Etter.13C CP/MAS NMR and Crystallographic Investigations of the Structure and Solid-State Transformations of Lead(II) Acetate Trihydrate.Inorganic Chemistry,23,3580-3584. (1984).
    26. V. Stan. Electronic and mechanical properties of nanocrystalline composites when approaching molecular size.Thin Solid Films, 297, 145-153.(1997).
    27. L. Dou,A.B. Wong,Y. Yu et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science .349, 1518–1521. (2015).

    下載圖示
    QR CODE