簡易檢索 / 詳目顯示

研究生: 林玫君
Mei-Chun Lin
論文名稱: 二氧化碳分子在CaO(100)表面上的氫化反應理論計算研究
Density-Functional Theory Calculation of Carbon Dioxide hydrogenation over CaO(100) Surface
指導教授: 何嘉仁
Ho, Jia-Jen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 96
語文別: 中文
中文關鍵詞: 二氧化碳吸附CaO(100)
論文種類: 學術論文
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用DFT (density functional theory)-GGA 的方法,對於二氧化碳與Ni / CaO的作用方式的計算,結果包括了以下幾個部份: (1)二氧化碳在CaO (100)的吸附結構。(2) 1Ni在CaO (100)的吸附情形。 (3)二氧化碳在Ni / CaO (100)的吸附結構。(4)H2O在Ni/CaO(100)表面的解離反應探討(5)二氧化碳在Ni / CaO (100)氫化至HCOOH的可能反應機構。(6) HCOOH繼續反應至CH3OH的反應機制。並且與實驗上提出的反應機構和其他理論計算的結果作進一步的比較。
    在結果中我們發現,在純的CaO(100)表面上吸附CO2的吸附能是36.07 kcal/mol,而其吸附位向CO2的O原子與表面上Ca原子dihedral angle = 0。,相較於dihedral angle = 45。的情況,吸附能較大。接著,我們又嘗試添加一顆過渡金屬Ni於CaO(100)表面上,發現Ni/CaO(100)表面對於CO2分子的吸附能達到45.231kcal/mol,比純的CaO(100)表面大了許多,我們便以此位向尋找氫化的反應途徑。
    接下來,我們以水分子解離途徑,找出H原子在Ni/CaO(100)表面上的最佳吸附位向,作為CO2氫化反應的初始表面。從結果中發現,H2O分子的分解,比較有可能的路徑中,斷第一個氫原子只需要4.622 kcal/mol的能障,接著繼續跨越過20.092 kcal/mol的能障即可將水分子分解。
    接著,我們將吸附於表面上O原子的氫定為H1,吸附於Ni原子上的氫定為H2,利用此氫化表面,將CO2吸附進來後氫化,使用NEB的方式尋找過渡狀態結構。

    We applied the periodic densityfunctional theory (DFT) to investigate the carbon dioxide adsorption sites on CaO(100) and Ni/CaO(100) surface, and we found that the largest adsorption energy was on the Ni/CaO(100) surface and calculated to be -45.20 kcal/mol. So, we used this surface as our followed hydrogenation reactions surface.
    We also investigated water dissociation, the first hydrogen was dissociated to oxygen on the surface with barrier 4.32 kcal/mol and the second hydrogen was with the barrier 20.09 kcal/mol. We started the hydrogenation reaction with carbon dioxide adsorbed on the hydrogenated Ni/CaO(100) surface. The hydrogenation reaction of CO2 was first forming stable formate and carboxyl structure, and then continued to form formic acid and methanol. The adsorbed formic acid was easily dissociated to adsorbed HCO and OH with the dissociation barrier¬¬ of 2.437 kcal/mol. Subsequently, the species (HCO+OH) continued to form formaldehyde (H2CO). We found that H2CO was a starting species to synthesis methanol. We also found pathways and potential energy surfaces to form methanol via CH2OH and CH3O intermediate.

    中文摘要 i 英文摘要 iii 第一章 緒論 1 第二章 研究方向 2-1 研究背景 5 2-2 研究目標 6 第三章 計算方法與表面測試 3-1 計算方法 8 3-2 表面層級測試及分子的描述 14 3-2-1 表面層級的測試 14 3-2-2 分子的描述 16 第四章 結果與討論 4-1 CaO(100)-(2×2)、1Ni-CaO(100)-(2×2)及2Ni-CaO(100)-(2×2)表面理論計算研究 22 4-1-1 純CaO(100)-(2×2) 表面對CO2分子的吸附 22 4-1-2 添加過渡金屬1Ni-CaO(100)-(2×2)表面對於CO2分子的吸附 26 4-1-3 添加過渡金屬1Ni-CaO(100)-(2×2)表面對於H2O分子的吸附 32 4-2 H2O在Ni/CaO(100)表面上的解離 ..................................35 4-3 CO2於Ni/CaO(100)表面上的氫化可能反應路徑探討....38 4-3-1 CO2氫化成COOH(carboxyl)及HCOO(formate)....40 4-3-2 COOH、HCOO氫化成HCOOH及H2COO..........45 4-3-3 在表面上形成H2CO. ...............................................47 4-3-4 H2CO繼續氫化成CH3OH的反應途徑..................47 第五章 結論........................................................................................54 第六章 參考文獻................................................................................56 第七章 附錄 60

    (1) Tagawa T, Appl. Catal. 1985, 8, 285.
    (2) National Geographic magazine 2007, 82
    (3) 二氧化碳減量技術,黃大仁,工業污染防治 第88期Oct. 2003 123-134.
    (4) 二氧化碳的捕獲及分離,徐恆文,《科學發展》2007年5月,413期,24-27.
    (5) 常麗萍, 鐘順和, 謝克昌, 燃料化學學報, 1994, 22(2), 170 6.
    (6) 倪小明, 譚猗生, 韓怡卓, 石油化工, PETROCHEM ICAL TECHNOLOGY, 2005年第34卷第6期, 二氧化碳催化轉化的研究發展
    (7) Markovits, A.; Fahmi, A.; Minot, C. Theo. Chem. 1996, 371, 219-235.
    (8) Medeiros, S.K. ; Albuquerque, E.L. ; Maia Jr., F.F. ; Caetano, E.W.S. ; Farias, G.A.; Freireb, V.N. ; Cavadac, B.S. ; Pessatid, M.L. ; Pessatid T.L.P. Micro.J. 2005, 36, 1058-1061.
    (9) Tutuianu, M.; Inderwildi, O.R.; Bessler, W.G.; Warnatz, J. J.Phys.Chem.B 2006, 110, 17484-17492.
    (10) Jensen, M.B.; Pettersson, L.G.M.; Swang, O.; Olsbye, U. J.Phys.Chem.B 2005, 109, 16774-16781.
    (11) Tai, J.; Ge, Q; Davis, R.J.; Neurock, M. J.Phys.Chem.B 2004, 108, 16798-16805
    (12) White, J.A.; Bird, D.M. Phys. Rev.B 1992, 46, 4954.
    (13) Perdew, J.P.; Chevary, J.A. ; Vosko, S.H. ; Jackson,K.A. ; Pederson, M.R. ; Singh, D.J. ; Fiolhais, C. Phys. Rev.B 1992, 46, 6671.
    (14) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
    (15) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
    (16) Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 169.
    (17) Blochl, P.E. Phys. Rev. B 1994, 50, 17953.
    (18) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
    (19) Pichet, P., Mao, H.K., Bell, P.M., Grophys, J. Res. 1988, 93, 15279.
    (20) Medeiros, S.K. ; Albuquerque, E.L. ; Maia Jr., F.F. ; Caetano, E.W.S. ; Farias, G.A.; Freireb, V.N. ; Cavadac, B.S. ; Pessatid, M.L. ; Pessatid T.L.P. Micro.J. 2005, 36, 1058-1061.
    (21) Kenmochi, K.; Seike, M.; Sato, K.; Yanase, A.; Katayama-Yoshida, H. Jpn. J. Appl. Phys. Part2 2004, 43, L934.
    (22) Skorodumova, N. V.; Ahuja, R.; Simak, S. I.; Abrikosov, I. A.; Johansson, B.; Lundqvist, B. I. Phys. Rev. B 2001, 64, 115108.
    (23) Alcalá, R.; Mavrikakis, M.; Dumesic, J. Catal. 2003, 218, 178
    (24) de Leeuw, N.H.; Purton, J.A.; Parker S.C.; Watson, G.W. ; Kresse, G. Surf. Sci. 2000, 452, 9-19.
    (25) Lide, D.R., Ed. In CRC Handbook of Chemistry and Physics, 3rd electronic ed.; CRC Press: Boca Raton, FL, 2000.
    (26) Lagowski, J.J., Modern Inorganic Chemistry, Marcel Dekker Inc, 1973, 368.
    (27) 王建偉, 鐘順和, CO2吸附活化的研究進展,化學進展, 1998年04期。
    (28) Carrasco, J.; Illas, F.; Lopez, N. Phys. Rev. Lett. 2008, 100, 016101.
    (29) Zheng, W. C. Physica. B 1996, 222, 243-246.
    (30) Alfonso, D. R.; Snyder, J. A.; Jaffe, J. E.; Hess, A. C.; Gutowski, M. Phys. Rev. B 2000, 62, 8318-8322.
    (31) Alfonso, D. R.; Snyder, J. A.; Jaffe, J. E.; Hess, A. C.; Gutowski, M. Phys. Rev. B 2003, 68, 155411.
    (32) Zhang, Y.; Draelants, D. J.; Engelen, K.; Baron, G. V. J. Chem. Technol. Biotechnol., 78, 265-268.
    (33) Jensen, M. B.; Pettersson, Lars G. M.; Swang, Ole; Olsbye, Unni J. Phys. Chem. B 2005, 109, 16774-16781.
    (34) Zhang, Y.; J. Fei, Y. Yu; Zheng, X. Energy Conversion and Management , 2006, 47, 3360-3367
    (35) Chinchen, G. C., J. Chem. Soc., Faraday Trans.Ⅰ, 1987, 83, 2193.
    (36) Greeley, Jeff ; Mavrikakis, M. Journal of Catalysis 2002 , 208, 291-300
    (37) International Hiroshi Nakatsuji; Hu, Z. M. Journal of Quantum Chemistry, 2000, 77, 341-349.
    (38) Waches, I. E.; Madix, R. J. J. Catal., 1978, 53, 208.
    (39) Kinnaird, S.; Wabb, G.; Chinchen, G. C. J. Chem. Soc. Faraday Trans.Ⅰ, 1987, 83, 3399.
    (40) Zhang, Y.; J. Fei, Y. Yu; Zheng, X. Energy Conversion and Management , 2006, 47, 3360-3367
    (41) Phala, N. S.; Thesis, MSc, University of Cape Town, 2002.
    (42) Branda, M. M.; Colloins, S. E.; Castellani, N. J.; Baltanas, M. A.; Bonivardi J. Phys. Chem. B, 2006, 110, 11847.
    (43) Hu, Z. M.; Nakatsuji, H. Chem. Phys. Lett., 1999, 313, 14-18.
    (44) Kantorovich, L. N.; Gillan, M. J. Surf. Sci., 1997, 374, 373-386.
    (45) Urakawa, A.; Jutz, F.; Laurenczy, G.; Baiker, A. Chem. Eur. J. 2007, 13, 3886-3899.
    (46) Chen, H. L.; Peng, W. T.; Ho, J. J.; Hsieh, H. M. Chemical Physics 2008, 348, 161–168.
    (47) Gong, X..-Q.; Raval, R.; Hu. P. Phys. Rev. Lett. 2004, 93, 106104.
    (48) Gong, X..-Q.; Liu, Z. P. J. Am. Chem. Soc. 2004, 126, 8.
    (49) Choe, S.J.; Kang, H.J.; Park, D.H.; Huh, D.S.; Park, J. Appl. Surf. Sci. 2001, 181, 265-276.

    無法下載圖示 本全文未授權公開
    QR CODE