研究生: |
楊伊凡 I-fan Yang |
---|---|
論文名稱: |
基徵草蛉複眼之微細構造及其生理學研究 The Studies of Fine Structure and Physiology to the Compound Eye of Green Lacewing, Mallada basalis (Neuroptera; Chrysopidae) |
指導教授: |
吳京一
Wu, Chin-Yin |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 32 |
中文關鍵詞: | 脈翅目 、基徵草蛉 、複眼 、微細構造 、網膜電圖 、光譜感光性 |
英文關鍵詞: | Neuroptera, Green Lacewing, compound eye, fine structure, electroretinogram, spetral sensitivity |
論文種類: | 學術論文 |
相關次數: | 點閱:237 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以掃描式及穿透式電子顯微鏡法研究基徵草蛉複眼之微細構造。複眼位於頭的兩側,每個複眼約有600個小眼,雌雄沒有差異。小眼整個長約100m。每個小眼包含一個晶體,一個圓錐體和八個網膜細胞。在晶體表面覆蓋有小的角膜乳突,2~3個晶體小面之間有小面間毛,四個圓錐細胞包圍圓錐體,兩個主要色素細胞圍繞在外。每個小眼外圍有十二個附屬色素細胞。第七個網膜細胞的桿小體首先出現在圓錐體的下方,第八個網膜細胞的桿小體覆蓋在桿狀體之上,桿狀體內沒有腔,是屬於癒合性小眼。八個網膜細胞延伸至基底膜形成軸突。
以不同的單色光及光強度刺激基徵草蛉的複眼,觀察其網膜電圖(ERG)反應的變化。昆蟲經過30分鐘的暗適應後,以300nm至700nm每隔10nm波長的光波刺激右複眼前額區域;每隔6秒鐘刺激一次,每次刺激時間是300msec,經4次之反應平均加算後記錄其ERG。ERG為雙相波。計算所得之光譜感光曲線在350nm處有最大吸光處(max=350nm),此與Dartnall 350nm之標準色素曲線極為吻合。複眼以350nm的光波適應一小時後,其max有明顯的被抑制,但其他部份未有變化。
以四分區域劃分在複眼,試驗其max,發現四區域之max亦為350nm。
The morphology of the compound eye of the green lacewing, Mallada basalis (Walker) was investigated by scanning and transmission electron microscopy. The optical superposition eye is composed of about 600 ommatidia that are identical in both sexes. The length of an ommatidium is approximately 100 m. Each ommatidium contains a lens covered with small corneal nipples, four cone cells forming a crystalline cone and tract, two principal pigment cells that encompass the crystalline cone, and eight retinula cells (numbers 1-8). Each ommatidium is surrounded by twelve accessory pigment cells, some of which are located in the center of a triangle formed by three adjacent ommatidia. Thus, accessory pigment cells belong to part of three different ommatidia. The proximal part of the ommatidium is tightly enclosed by the tracheae. In dark adaptation, seven retinula cells (numbers 1-7) are arranged in a circle at the tip of the crystalline tract. The rhabdomere of retinula cell number 7 lies at the proximal end of the crystalline tract, and number 8 lies at the distal end of the rhabdom column. All eight retinula cells penetrate the basement membrane and continue as eight axons. Each ommatidium shows the fused-type rhabdom that is of great advantage to spectral sensitivity.
The characteristics of the compound eye of the green lacewing were investigated by recording the electroretinograms (ERG) to the illumination of various monochromatic light intensities. The frontal region of the right compound eye was stimulated by a flashing light, ranging from 300 nm to 700 nm, with an interval of 6 sec after 30-min adaptation in a dark environment. The ERG observed shows a biphasical deflection. The spectral sensitivity curve computed by the ERG response displays a peak activity at UV light (max 350 nm). This peak activity was substantially suppressed after adaptation in a conditioned light environment (350 nm) for one hour. These results suggest that the compound eye of M. basalis is very sensitive to UV light.
After the surface of the right compound eye were quartered, the spectral sensitivities were investigated. The max of each region was 350nm.
Anton-Erxleben, F., and H. Langer. 1988. Functional morphology of the ommatidia in the compound eye of the moth, Antheraea polyphemus (Insecta, Saturniidae). Cell Tissue Res. 252: 385-396.
Arikawa, K., K. Inokuma, and E. Eguchi. 1987. Pentachromatic visual system in a butterfly. Nature 74:297-298.
Ast, F. 1920. Uber den feineren Bau der Facettenaugen bei Neuropteren. Zool. Jahrb. Abt. F. Morphol. 41: 411-458.
Autrum, H. 1958. Electrophysiological analysis of the visual systems in insects. Expl. Cell Res. Suppl. 5: 426-439.
Carlson, S. D., and C. Chi. 1974. Surface fine structure of the eye of the housefly (Musca domestica): ommatidia and lamina ganglionaris. Cell Tissue Res. 149: 21-41.
Chang, C. P., and S. C. Huang. 1995. Evaluation of the effectiveness of releasing green lacewing, Mallada basalis (Walker) for the control of tetranychid mites on strawberry. Plant Prot. Bull. 37: 41-58. (in Chinese)
Chen, S. M., W. Y. Cheng, and Z. T. Weng. 1993. Nonpartition rearing of the green lacewing, Mallada basalis (Neuroptera: Chrysopidae). Rep. Taiwan Sugar Res. Inst. 141: 25-33.
Cleary, P., G. Deichsel, and P. Kunze. 1977. The superposition image in the eye of Ephestia Kuhniella. J. Comp. Physiol. 119: 73-84.
Dartnall, H. J. A. 1953. The interpretation of spectral sensitivity curves. Br. Med. Bull. 9: 24-30.
Duelli, P., 1984. Life histories and behavior --- flight, dispersal, migration, pp. 110-116. In M. Canard, Y. Semeria, and T. R. New [eds.], Biology of Chrysopidae. Junk, Boston.
Ebrey, T. G., and B. Honig. 1977. New wavelength dependent visual pigment nomograms. Vision Res. 17: 147-151.
Eguchi, E., 1982. Retinular fine structure in compound eyes of diurnal and nocturnal sphingid moths. Cell Tissue Res. 223: 29-42.
Eguchi, E., and T. Horikoshi. 1984. Comparison of stimulus-response (V-log I) functions in five types of Lepidopteran compound eyes (46 species). J. Comp. Physiol. 154: 3-12.
Frantsevich, L., V. Govardovski, F.Grigakin, G. Nikolajev, V. Pichka, A. Polanovsky, V. Shevchenko, and V. Zolotov. 1977. Astroorientation in Lethrus (Coleoptera, Scarabaeidae). J. Comp. Physiol. 121: 253-271.
Gribakin, F., E. Alekseyev, S. Shukolyukov, and M. Gogala. 1995. Unconventional ultraviolet sensitivity spectra of Ascalaphus (Insecta: Neuroptera). J. Comp. Physiol. A 177: 201-206.
Hardie, R. C., N. Franceschini, and P. D. McIntyre. 1979. Electrophysiological analysis of fly retina. II. Spectral and polarization sensitivity in R7 and R8. J. Comp. Physiol. 133: 23-39.
Henry, C. S. 1984. Life histories and behavior - the sexual behavior of green lacewing. pp. 101-110. In M. Canard, Y. Semeria, and T. R. New [eds.], Biology of Chrysopidae. Junk, Boston.
Horridge, G. A. and I. Henderson. 1976. The ommatidium of the lacewing Chrysopa (Neuroptera). Proc. R. Soc. Lond. B. 192: 259-271.
Horridge, G. A., C. Giddings, and G. Stange. 1972. The superposition eye of skipper butterflies. Proc. R. Soc. Lond. B. 182: 457-495.
Huffaker, C. B., R. L. Rabb, and J. A. Longan. 1977. Some aspects of population dynamics relative to augmentation of natural enemy action. pp. 3-38. In R. L. Ridgway, and S. B. Vinson [eds.], Biological control by augmentation of natural enemies. New York:Plenum Press.
Kolb, G. 1977. The structure of the eye of Pieris brassicae L. (Lepidoptera). Zoomorphology 87: 123-146.
Land, M. F. 1985. The eye: optics, pp. 225-275. In G. A. Kerkut and L. I. Gilbert [eds.], Comprehensive insect physiology, biochemistry and pharmacology, vol. 6. Nervous system: sensory. Pergramon, Oxford.
Land, M. F 1989. Variations in the structure and design of compound eyes, pp. 90-111. In D. G. Stavenga and R. C. Hardie [eds.], Facets of vision. Springer, New York.
Laughlin, S., and S. McGinness. 1978. The structures of dorsal and ventral regions of a dragonfly retina. Cell Tissue Res. 188: 427-447.
Lin, J. T., and C. Y. Wu. 1992. A comparative study on the color vision of four coleopteran insects. Bull. Inst. Zool. Acad. Sin. 31(2): 81-88.
Mani, M. 1993. Evaluation of toxicity of different pesticides to the green lacewing, Mallada basalis (Neuroptera: Chrysopidae). J. Biol. Control 7(2): 61-68.
Matic, T., and S. B. Laughlin. 1981. Changes in the intensity-response function of an insect photoreceptors due to light adaptation. J. Comp. Physiol. A 145: 169-177.
Meinecke, C. C. 1981. The fine structure of the compound eye of the African armyworm moth, Spodoptera exempta Walker. (Lepidoptera: Noctuidae). Cell Tissue Res. 216: 333-347.
Meinecke, C. C., and H. Langer. 1984. Localization of visual pigments within rhabdoms of the compound eye of Spodoptera exempta (Insecta, Noctuidae). Cell Tissue Res. 272: 17-22.
Meyer, E. P., and T. Labhart. 1993. Morphological specialization of dorsal rim ommatidia in the compound eye of dragonflies and damselflies (Odonata). Cell Tissue Res. 272: 17-22.
Meyer-Rochow, V. B. 1971. A crustacean-like organization of insect rhabdoms. Cytobiologie 4: 241-249.
Meyer-Rochow, V. B 1981. Electrophysiology and histology of the bumblebee Bombus hortorum (L.)(Hymenoptera: Apidae). J. Royal Soc. N. Z. 11: 123-153.
Meyer-Rochow, V. B. and G. A. Horridge. 1975. The eye of Anoplognathus (Coleoptera, Scarabaeidae). Proc. R. Soc. Lond. B. 182: 457-495.
Miller, W. H. 1979. Ocular optical filtering, pp. 90-128. In H. Autrum [ed.], Handbook of sensory physiology, VII/6A. Comparative physiology and evolution of vision in invertebrates. A. Invertebrate photoreceptors. Springer, New York.
Nilsson, D. E. 1989. Optics and evolution of the compound eye, pp. 30-73. In D. G. Stavenga and R. C. Hardie [eds.], Facets of vision. Springer, New York.
Ribi, W. A. 1978. Ultrastructure and migration of screening pigments in the retina of Pieris rapae L. (Lepidoptera, Pieridae). Cell Tissue Res. 191: 57-73.
Ridgway, R. L., and W. L. Murphy. 1984. Biological control in the field. pp. 220-228. In M. Canard, Y. Semeria, and T. R. New [eds.], Biology of Chrysopidae. Junk, Boston.
Schneider, L., and H. Langer. 1975. Electron microscopic investigations on the structure of the photoreceptor cells in the compound eye of Ascalaphus macaronius (Insecta: Neuroptera), pp. 410-412. In A. W. Snyder and R. Menzel [eds.], Photoreceptor optics. Springer, New York.
Sengonca, C., and M. Henze. 1992. Conservation and enhancement of Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) in the field by providing hibernation shelters. J. Appl. Entomol. 114: 497-501.
Shiraki, T. 1981. Family Chrysopidae. pp. 301-302. Classification of insects. Hokuryukan, Tokyo.
Snyder, A. W., R. Menzel, and S. B. Laughlin. 1973. Structure and function of the fused rhabdom. J. Comp. Physiol. 87: 99-135.
Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31-43.
Stark, W. S. 1975. Spectral sensitivity of visual response alterations mediated by interconvensions of nature and intermediate photopigments in Drosophila. J. Comp. Physiol. 96: 343-356.
Stavenga, D. G. 1992. Eye regionalization and spectral tuning of retinal pigments in insects. T1 15(6): 213-218.
Struwe, G. 1973. Spectral sensitivity of the compound eye in a moth. Intra- and extracellular recordings. Acta Physiol. Scand. 87: 63-68.
Trujillo-Cenoz, O. 1985. The eye: development, structure and neural connections, pp. 171-193. In G. A. Kerkut and L. I. Gilbert [eds.], Comprehensive insect physiology, biochemistry and pharmacology, vol. 6. Nervous system: sensory. Pergramon, Oxford.
Wada, S. 1974. Spezielle randzonale ommatidien der fliegen (Diptera: Brachycera): architektur und verteilung. Z. Morphol. Tiere 77: 87-125.
Walcott, B., and G. A. Horridge. 1971. The compound eye of Archichauloides (Megaloptera). Proc. R. Soc. Lond. B. 179: 65-72.
Wehner, R. 1981. Spatial vision in arthropods, pp. 288-616. In H. Autrum [ed.], Handbook of sensory physiology, VII/6C. Comparative physiology and evolution of vision in invertebrates. C. Invertebrate visual centers and behavior II. Springer, New York.
Wu, C. Y. 1989. Receptors in insects II. Electroretinogram of the compound eye in the oriental fruit fly (Dacus dorsalis Hendel). Bull. Inst. Zool. Acad. Sin. 28(1): 7-13.
Wu, C. Y., C. S. Chang, L. C. Tung, and J. T. Lin. 1985. Receptors in insects I. The fine structure of the compound eye of the oriental fruit fly (Dacus dorsalis Hendel). Bull. Inst. Zool. Acad. Sin. 24(1): 27-38.
Wu, T. K. 1992. Feasibitity of controlling citrus red spider mite, Panonychus citri (Acarina: Tetranychidae) by green lacewing, Mallada basalis (Neuroptera: Chrysopidae). Chin. J. Entomol. 12: 81-89. (in Chinese)
Wu, T. K. 1995. Integrated control of Phyllocnistis citrella, Panonychus citri, and Phyllocoptruta oleivora with periodic releases of Mallada basalis and pesticide applications. Chinese J. Entomol. 15: 113-123. (in Chinese)
Yang, E. C., and D. Osorio. 1991. Spectral responses of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau. J. Comp. Physiol. A 169: 663-669.
Zeleny, J. 1984. Habitats and phenology-Chysopid occurrence in west Palearctic temperate forests and derived biotopes. pp. 151-160. In M. Canard, Y. Semeria, and T. R. New [eds.], Biology of Chrysopidae. Junk, Boston.