簡易檢索 / 詳目顯示

研究生: 林宗圓
Lin, Zong-Yuan
論文名稱: 摻雜銩元素的釔鐵石榴石結構與磁性探討
Structural and magnetic properties of TmxY3-xFe5O12 thin films on GGG(111) and YAG(111)
指導教授: 駱芳鈺
Lo, Fang-Yuh
口試委員: 趙宇強
Chao, Yu-Chiang
黃仲仁
Huang, Jung-Ren
駱芳鈺
Lo, Fang-Yuh
口試日期: 2023/07/06
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: 釔鐵石榴石銩鐵石榴石脈衝雷射鍍膜系統垂直磁異向性釓鎵石榴石(GGG)釔鋁石榴石(YAG)
英文關鍵詞: Yttrium iron garnet, Thulium Iron Garnet, Pulsed laser deposition(PLD), perpendicular magnetic anisotropy(PMA), Gadolinium gallium garnet(GGG), Yttrium Aluminum Garnet(YAG)
研究方法: 實驗設計法參與觀察法比較研究觀察研究
DOI URL: http://doi.org/10.6345/NTNU202301651
論文種類: 學術論文
相關次數: 點閱:197下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用脈衝雷射沉積法,在 GGG(111) 和 YAG(111) 基板上生長摻雜銩元素的釔鐵石榴石(TmYIG)薄膜,並探討在室溫下的結構、表面形貌、磁性和磁光特性。膜厚由表面輪廓儀測量,鍍膜靶材鍍率具有沉積時間和薄膜厚度的線性關係,代表鍍膜速率為定值。薄膜結構由X 射線繞射測量,光譜顯示在 GGG(111)呈現雙層結構,薄膜的應變從壓縮轉為拉伸,其中唯一拉伸應變佔據主導性的薄膜是TmIG。此雙層結構中具拉伸應變的薄膜靠近GGG基板,壓縮應變的薄膜則在最上層。在YAG(111)基板上的薄膜晶格常數(lattice constant)則隨著 Tm 含量的增加而減小。YAG(111)基板上的TmYIG薄膜皆表現出壓縮應變。AFM 量測結果間接證實TmYIG/GGG具有雙層結構,而且以層狀+島狀的形式生長;TmYIG/YAG則以島狀的形式生長。VSM的檢測發現磊晶於兩種基板上的TmYIG薄膜在平行與垂直磁場下的矯頑場都會隨著Tm 摻雜量的增加而增大,從0 Oe增大到150 Oe。方正度則表明隨著Tm含量增加磁矩趨向法線方向,TmIG/GGG唯一具有垂直磁異向性(PMA),代表TmIG/GGG具有拉伸應變與XRD結果中TmIG惟一由拉伸應變主導的薄膜相符。TmYIG薄膜的磁光法拉第效應在波長 300 和 500 nm 之間最強。飽和法拉第旋轉角在 2 到 24 mrad 之間,其中在 GGG(111) 上生長的薄膜具有稍大的飽和法拉第旋轉角。磁性和磁光檢測表明只有 TmIG/GGG 表現出可能的PMA,與VSM的結果相同。

    In this study, TmxY3-xFe5O12 (TmYIG) thin films were grown on GGG(111) and YAG(111) substrates by pulsed laser deposition. Structural, surface topography, magnetic and magneto-optical properties are measured at room temperature. The film thickness is measured by a profilometer, and a linear relationship between the deposition time and the film thickness is observed, that the thin film deposition rate is a constant value. The film structure is measured by X-ray diffraction. The spectra shows that TmYIG/GGG(111) thin film have a double-layer structure. The only film has dominant tensile strain is TmIG. In addition, the film peak which has tensile strain is on the GGG substrate, and the film which has compressive strain is at the top. The lattice constant of the film on the YAG(111) substrate decreases with the increase of Tm content. TmYIG films on YAG(111) substrates all exhibit compressive strain. AFM measurements indirectly confirmed that TmYIG/GGG has a double-layer structure and grows in the form of layers + islands, while TmYIG/YAG grows in the form of islands. VSM found that the coercivity of the TmYIG film epitaxial on the two substrates under in plane and out plane will increase with the increase of the Tm content, from 0 to 150 Oe. The squareness indicates that as the Tm content increases, the magnetic moment tends to the normal direction, and TmIG/GGG is the only has perpendicular magnetic anisotropy. This means that TmIG/GGG has tensile strain. It matches that TmIG is the only film of dominat tensile strain in XRD results. The magneto-optical Faraday effect of TmYIG thin films is strongest between the wavelengths of 300 and 500 nm. The saturated Faraday rotation angles range from 2 to 24 mrad, with films grown on GGG(111) having slightly larger saturated Faraday rotation angles. Magnetic and magneto-optical examinations indicated that only TmIG/GGG exhibited a possible PMA, identical to the results of VSM.

    摘要 I Abstract II 第一章 緒論 1 第二章 基本原理 5 2-1 稀土鐵石榴石 (Rare earth iron garnet) 5 2-1-1 釔鐵石榴石 (Yttrium iron garnet, YIG) 5 2-1-2 銩鐵石榴石 (Thulium iron garnet, TmIG) 7 2-1-3 釔鋁石榴石 (Yttrium aluminum garnet, YAG) 8 2-1-4 釓鎵石榴石 (Gadolinium Gallium Garnet) 9 2-2 脈衝雷射鍍膜系統(Pulsed Laser Deposition) 11 2-2-1 真空 (Vacuum) 11 2-2-2 脈衝雷射鍍膜系統原理 11 2-2-3 脈衝雷射鍍膜系統儀器設置 12 2-3 表面輪廓儀(Profilometer) 14 2-4 X射線繞射(X-ray diffraction, XRD) 15 2-4-1 X光光譜 15 2-4-2 布拉格繞射(Bragg's diffraction) 16 2-5 原子力顯微鏡 (Atomic force microscope) 18 2-5-1 AFM工作原理 18 2-5-2 輕敲式模式(Tapping mode) 20 2-6 磁性(Magnetism) 21 2-6-1 磁性物質(magnetic materials) 21 2-6-2 磁異向性 (magnetic anisotropy) 23 2-6-3 磁滯曲線 (Hysteresis loop) 26 2-6-4 振動樣品磁力計 (Vibrating sample magnetometer, VSM) 27 2-6-5 磁光法拉第效應 (Magneto-optic Faraday effect) 29 第三章 樣品製備 31 3-1 鍍膜條件 31 3-2 靶材製作 31 3-2-1 靶材製作公式 31 3-2-2 靶材製作方法 32 3-3 基板清洗 34 3-4 鍍膜流程 34 3-5 退火步驟 35 第四章 實驗結果分析 37 4-1 鍍膜速率分析 37 4-2 晶體結構分析 40 4-2-1 TmYIG/GGG 40 4-2-2 TmYIG/YAG 45 4-3 表面形貌分析 48 4-4 磁性分析 52 4-5 法拉第磁光光譜分析 58 第五章 結論 64 Reference 66 附錄 72 附錄1 TmYIG/GGG全光譜 72 附錄2 TmYIG/YAG全光譜 73 附錄3 YIG/GGG波段(320nm~500nm)法拉第磁光光譜 74 附錄4 YIG/YAG波段(320nm~500nm)法拉第磁光光譜 76 附錄5 Tm 0.5/GGG波段(320nm~500nm)法拉第磁光光譜 78 附錄6 Tm 0.5/YAG波段(320nm~500nm)法拉第磁光光譜 80 附錄7 Tm 1.0/GGG波段(320nm~500nm)法拉第磁光光譜 82 附錄8 Tm 1.0/YAG波段(320nm~500nm)法拉第磁光光譜 84 附錄9 Tm 1.5/GGG波段(320nm~500nm)法拉第磁光光譜 86 附錄10 Tm 1.5/YAG波段(320nm~500nm)法拉第磁光光譜 88 附錄11 Tm 2.0/GGG波段(320nm~500nm)法拉第磁光光譜 90 附錄12 Tm 2.0/YAG波段(320nm~500nm)法拉第磁光光譜 92 附錄13 Tm 2.5/GGG波段(320nm~500nm)法拉第磁光光譜 94 附錄14 Tm 2.5/YAG波段(320nm~500nm)法拉第磁光光譜 96 附錄15 TmIG/GGG波段(320nm~500nm)法拉第磁光光譜 98 附錄16 TmIG/YAG波段(320nm~500nm)法拉第磁光光譜 100

    1. 陳柏全、林柏宏、賴志煌,夢幻記憶體:非揮發性的磁性記憶體,科儀新知,211 期,2017
    2. SOT MRAM的原理與發展近況(一)。檢自:https://www.digitimes.com.tw/col/article.asp?id=1017
    3. Peng Zhang, Spin-orbit torque induced magnetization switching in tungsten/thulium iron garnet bilayer, University of California, USA (2018)
    4. Cheng Song, Ruiqi Zhang, Liyang Liao, Yongjian Zhou, Xiaofeng Zhou, Ruyi Chen, Yunfeng You, Xianzhe Chen, Feng Pan, Spin-orbit torques: materials, mechanisms, performances, and potential applications, Progress in Materials Science, 118, 100761 (2021)
    5. Shouzhong Peng, Daoqian Zhu, Jiaqi Zhou, Boyu Zhang, Anni Cao, Mengxing Wang, Wenlong Cai, Kaihua Cao, Weisheng Zhao, Modulation of Heavy Metal/Ferromagnetic Metal Interface for High-Performance Spintronic Devices, Advanced Electronic Materials, 9, 1900134 (2023)
    6. Nguyen Huynh, Duy Khang, Yugo Ueda, Pham Nam Hai, A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching, Nature Materials, 17, 808-813 (2018)
    7. SOT MRAM的原理與發展近況(二)。檢自:https://www.digitimes.com.tw/col/article.asp?id=1018
    8. Yaning Lin, Lichuan Jin, Dainan Zhang, Huaiwu Zhang, Current induced magnetization switching in ferrimagnetic insulators with perpendicular magnetic anisotropy A macrospin modeling, Journal of Magnetism and Magnetic Materials, 579, 170681 (2023)
    9. Nguyen M. Vu, Peter B. Meisenheimer, John T. Heron, Tunable magnetoelastic anisotropy in epitaxial (111) Tm3Fe5O12 thin films, Journal of Applied Physics, 127, 153905 (2020)
    10. Shi-Yu Liu, Zong-Yuan Lin, Ye-Ren Chang, Yu-Tso Liao, Po-Hsun Wu, Ssu-Yen Huang, Wen-Chin Lin, Fang-Yuh Lo, Strain-induced magnetic anisotropy of REIG thin films grown on YAG(111) substrates by pulsed laser deposition, Journal of Alloys and Compounds, 922, 166217 (2022)
    11. Gang Li, He Bai, Jian Su, Z. Z. Zhu, Ying Zhang, J. W. Cai, Tunable perpendicular magnetic anisotropy in epitaxial Y3Fe5O12 films, APL Materials, 7, 041104 (2019)
    12. Adam Krysztofik, Sevgi Özoğlu, Robert D. McMichael, Emerson Coy, Effect of strain‑induced anisotropy on magnetization dynamics in ­Y3Fe5O12 flms recrystallized on a lattice‑mismatched substrate, Scientific Reports, 11, 14011 (2021)
    13. Hailong Wang, Chunhui Du, P. Chris Hammel, and Fengyuan Yang, Strain-Tunable Magnetocrystalline Anisotropy in Epitaxial Y3Fe5O12 Thin Films, PHYSICAL REVIEW B, 89, 134404 (2014)
    14. Chi Tang, Materials Development and Spin Transport Study of Magnetic Insulator Based Heterostructures, University of California, USA (2014)
    15. Takuya Yoshimoto, Taichi Goto, Kei Shimada, Bungo Iwamoto, Yuichi Nakamura, Hironaga Uchida, Caroline A. Ross, and Mitsuteru Inoue, Static and Dynamic Magnetic Properties of Single-Crystalline Yttrium Iron Garnet Films Epitaxially Grown on Three Garnet Substrates, 5, 1900380 (2019)
    16. Oana Ciubotariu, Anna Semisalova, Kilian Lenz, Manfred Albrecht, Strain-induced perpendicular magnetic anisotropy and Gilbert damping of Tm3Fe5O12 thin films, Scientific Reports, 9, 17474 (2019)
    17. C. N. Wu, C. C. Tseng, Y. T. Fanchiang, C. K. Cheng, K. Y. Lin, S. L. Yeh, S. R. Yang, C. T. Wu, T. Liu, M. Wu, M. Hong, J. Kwo, High-quality thulium iron garnet flms with tunable perpendicular magnetic anisotropy by of-axis sputtering – correlation between magnetic properties and film strain, Scientific Reports, 8, 11087 (2018).
    18. Chi Tang, Pathikumar Sellappan, Yawen Liu, Yadong Xu, Javier E. Garay, Jing Shi, Anomalous Hall hysteresis in Tm3Fe5O12/Pt with strain-induced perpendicular magnetic anisotropy, PHYSICAL REVIEW B, 94, 140403(R) (2016)
    19. Andy Quindeau, Can O. Avci, Wenqing Liu, Congli Sun, Maxwell Mann, Astera S. Tang, Mehmet C. Onbasli, David Bono, Paul M. Voyles, Yongbing Xu, Jason Robinson, Geoffrey S. D. Beach, Caroline A. Ross, Tm3Fe5O12/Pt Heterostructures with Perpendicular Magnetic Anisotropy for Spintronic Applications, Advanced Electronic Materials, 3, 1600376 (2017)
    20. Lucile Soumah, Nathan Beaulieu, Lilia Qassym, Cécile Carrétéro, Eric Jacquet, Richard Lebourgeois, Jamal Ben Youssef, Paolo Bortolotti, Vincent Cros, Abdelmadjid Anane, Ultra-low damping insulating magnetic thin films get perpendicular, Nature Communications, 9, 3355 (2018)
    21. Pathikumar Sellappan, Chi Tang, Jing Shi, Javier E. Garay, An integrated approach to doped thin films with strain-tunable magnetic anisotropy powder synthesis, target preparation, and pulsed laser deposition of Bi-YIG, Materials Research Letters, 5, 41-47 (2017)
    22. Aliaa M. Zaki, Harry J. Blythe, Steve M. Heald, A. Mark Fox, Gillian A. Gehring, Growth of high quality yttrium iron garnet films using standard pulsed laser deposition technique, Journal of Magnetism and Magnetic Materials, 453, 254-257 (2018)
    23. 祁季偉,以液相磊晶法於矽基板上進行鍺橫向磊晶之研究,中原大學(博士論文),2021
    24. R. Karim, S.A. Oliver, C. Vittoria, Laser Ablation Deposition of YIG Films on Semiconductor and Amorphous Substrates, IEEE Transactions on Magnetics, 31, 3485-3487 (1995)
    25. Rong Ma , Ming Liu , Jiannong Wang , Hong Wang, The room temperature deposition of high-quality epitaxial yttrium iron garnet thin film via RF sputtering, Journal of Alloys and Compounds, 708, 213-219 (2017)
    26. C. N. Wu, C. C. Tseng, K. Y. Lin, C. K. Cheng, S. L. Yeh, Y. T. Fanchiang, M. Hong, J. Kwo, High-quality single-crystal thulium iron garnet films with perpendicular magnetic, AIP ADVANCES, 8, 055904 (2018)
    27. Néel, R. Pauthenet, B. Dreyfus, Chapter VII The Rare Earth Garnets, Progress in Low Temperature Physics, 4, 344-383 (1964)
    28. A. Paoletti, Physics of Magnetic Garnets, SOCIETÀ ITALIANA DI FISICA BOLOGNA Publishing (1978)
    29. M. C. Onbasli, A. Kehlberger, D. H. Kim; G. Jakob, M. Kläui, A. V. Chumak, B. Hillebrands, C. A. Ross, Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization, APL Materials, 2, 106102 (2014)
    30. W.S. Ishak , Magnetostatic wave technology: a review, Proceedings of the IEEE, 76, 3136564 (1988)
    31. Saeedeh Mokarian Zanjani, Mehmet C. Onbaşlı, Predicting New Iron Garnet Thin Films with Perpendicular Magnetic Anisotropy, Journal of Magnetism and Magnetic Materials, 499, 166108, (2020)
    32. Yiyan Sun, Mingzhong W, Yttrium Iron Garnet Nano Films: Epitaxial Growth, Spin-Pumping Efficiency, and Pt-Capping-Caused Damping, Solid State Physics, 64, 157-191 (2013),
    33. Li-Shan Xie, Guang-Xi Jin, Lixin He, Gerrit E. W. Bauer, Joseph Barker, and Ke Xia, First-Principles Study of Exchange Interactions of Yttrium Iron Garnet, Phys. Rev. B 95, 014423 (2017)
    34. Saeedeh Mokarian Zanjani, Mehmet C. Onbaşlı, Modelling data for Predicting New Iron Garnet Thin Films with Perpendicular Magnetic Anisotropy, Data in Brief, 28, 104937 (2020)
    35. Shuanhu Wang, Gang Li, Xuechen Huang, Yingyi Tian, Jiayao Yu, Lixia Ren, Hongrui Zhang, Jianyuan Wang, Kexin Jin, Preparation of thulium iron garnet ceramics and investigation of spin transport properties in thin films, Ceramics International, 45, 7649-7653 (2019)
    36. Y3Al5O12 基板參數。檢自:https://www.sputtertargets.net/yttrium-aluminium-garnet-crystal-substrate-yag/
    37. Syed N. Qadri, Woohong Kim, Shyam Bayya, L. Brandon Shaw, Syed B. Qadri, Joseph Kolis, Bradley Stadelman, Jasbinder Sanghera, Epitaxial Growth of Single Crystal YAG for Optical Devices, Coatings, 11(6), 644 (2021)
    38. S. Kostić, Z.Ž. Lazarević, V. Radojević, A. Milutinović, M. Romčević, N.Ž. Romčević, A. Valčić, Study of structural and optical properties of YAG and Nd:YAG single crystals, Materials Research Bulletin, Volume 63, P80-P87 (2015)
    39. Gd3Ga5O12 基板參數。檢自:https://www.msesupplies.com/products/gadolinium-gallium-garnet-gd3ga5o12-ggg-crystals-and-substrates
    40. 羅吉宗,薄膜科技與應用,全華出版社,2018
    41. R. Eason, Pulsed laser deposition of thin films: applications-led growth of functional materials, Wiley-Interscience publication (2007)
    42. 林于庭,氧化鈥鋅薄膜的磁光與電性,國立臺灣師範大學(碩士論文),2020
    43. Kidoh, H., Morimoto, A., and Shimizu, T., Synthesis of ferromagnetic Bi‐substituted yttrium iron garnet films by laser ablation, Applied Physics. Lett. 59, 237–239 (1991)
    44. 林建良,脈衝雷射沉積法沉積法製備釔銩鐵石榴石薄膜的探討:結構、光學與磁性研究,國立臺灣師範大學(碩士論文),2018
    45. 林弘霖,摻雜釤元素的釔鐵石榴石之磁性探討,國立臺灣師範大學(碩士論文),2020
    46. 程雋,近代物理學,文笙出版社,2016
    47. X射線的產生。檢自:http://pd.chem.ucl.ac.uk/pdnn/inst1/xrays.htm
    48. B. D. Cullity, Element of X ray diffraction, Addison-Wesley Publishing, Second edition (1978)
    49. 倪澤恩,基礎固態物理,五南出版社,2019
    50. 楊仲準,X光繞射分析技術與應用,科儀新知第三十二卷第六期,2011
    51. Anjali Bishnoi, Sunil Kumar, Nirav Joshi, Chapter 9 - Wide-Angle X-ray Diffraction (WXRD): Technique for Characterization of Nanomaterials and Polymer Nanocomposites, Microscopy Methods in Nanomaterials Characterization, 313-337 (2017)
    52. 羅吉宗、戴明鳳、林鴻銘、鄭振宗、蘇程裕、吳育民,奈米科技導論,全華出版社,2016
    53. J. Thornton, C. Fitzgerald, L. Burrows, C. Kowalski, SPM Training Notebook, Bruker Publishing, Fifth edition (2003)
    54. Olympus探針產品型錄。檢自:https://probe.olympus-global.com/image/support/dl/insg/probe/catalog/MEMS15E_Jul2012.pdf
    55. 張桓僕,氧缺陷對於氧化鋅薄膜奈米摩擦性質之影響,國立臺灣師範大學(碩士論文),2016
    56. 廖黎杰,鐵鈀合金薄膜在氫化效應下旋轉磁異向性,國立臺灣師範大學(碩士論文),2021
    57. 磁性物質簡介。簡自:https://highscope.ch.ntu.edu.tw/wordpress/?p=1629
    58. 林韋如,氧化鏑鋅薄膜的法拉第磁光與電性,國立臺灣師範大學(碩士論文),2021
    59. B. D. Cullity, C. D. Graham, Introduction to magnetic materials, John Wiley & Sons, Inc., Hoboken, New Jersey Publishing, Second edition (2009)
    60. 任盛源,基礎磁性物理,五南出版社,2018
    61. H. Kirchmayr, Magnetic Anisotropy, Encyclopedia of Materials: Science and Technology (Second Edition), Pages 4754-4757, 2001
    62. Pawel Gruszecki, Chandrima Banerjee, Michal Mruczkiewicz, Olav Hellwig, Anjan Barman, Maciej Krawczyka, Chapter Two - The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns, Solid State Physics, 72, 29-82 (2021)
    63. 磁的異向性簡介。檢自:https://cse.umn.edu/irm/3-magnetic-anisotropy
    64. 張逢仁,研究磊晶與多晶結構釔鐵榴石磁性絕緣體中純自旋電流的產生,國立臺灣大學(碩士論文),2016
    65. 吴柏勳,釔鐵石榴石之表面及塊材磁化強度之非共線行為,國立臺灣大學(碩士論文),2016
    66. 解釋與分析振動樣品磁力計(VSM)分析。檢自: http://www.analyzetest.com/index.php/2021/03/16/interpretation-of-vibrating-sample-magnetometer-vsm-analysis/?fbclid=IwAR0TVNNFFAyHNiaWSrv3aB4LvNv4eS_8cCa1rbrOV0Lb9rKdMQhID-cMYUQ
    67. Microsence EZ9樣品型錄
    68. N.Miura, Magneto-Spectroscopy of Semiconductors: 2.08 - Magneto-Spectroscopy of Semiconductors, Materials Science and Materials Engineering, Volume 2, Pages 256-342 (2021)
    69. Yale Cheng, Encyclopedia of Physical Science and Technology, Academic Press Publishing, third edition, 381-394 (2003)
    70. Biswanath Bhoi, Bosung Kim, Yongsub Kim, Min-Kwan Kim, Jae-Hyeok Lee, Sang-Koog Kim, Stress-induced magnetic properties of PLD-grown high-quality ultrathin YIG films, Journal of Applied Physics, 123, 203902 (2018)
    71. Ravinder Kumar, Z. Hossain, R. C. Budhani, Effects of post-deposition annealing on the structure and magnetization of PLD grown yttrium iron garnet films, Journal of Applied Physics, 121, 113901 (2017)
    72. Setsuo Yamamoto, Hirofumi Kuniki, Hiroki Kurisu, Mitsuru Matsuura, Pyungwoo Jang, Post-annealing effect of YIG ferrite thin-films epitaxially grown by reactive sputtering, physica status solidi (a), 201, 1810-1814 (2004)
    73. Eva Liskova Jakubisova, Stefan Visnovsky, Houchen Chang, Mingzhong Wu, Interface effects in nanometer-thick yttrium iron garnet films studied by magnetooptical spectroscopy, Appl. Phys. Lett., 108, 082403 (2016)
    74. Dae-Joon Kim, Sang-Hoon Hyun, Seung-Goo Kim, Masatomo Yashima, Effective Ionic Radius of Y3+ Determined from Lattice Parameters of Fluorite-Type HfO2 and ZrO2 Solid Solutions, Journal of the American Ceramic Society, 77, 597-599 (1994)
    75. John A. Cartmill, Cristobal G. dos Remedios, Ionic radius specificity of cardiac muscle, Journal of Molecular and Cellular Cardiology, 12, Pages 219-223 (1980)
    76. Ying Liu, Peng Zhou, Rao Bidthanapally, Jitao Zhang, Wei Zhang, Michael R. Page, Tianjin Zhang, Gopalan Srinivasan, Strain Control of Magnetic Anisotropy in Yttrium Iron Garnet Films in a Composite Structure with Yttrium Aluminum Garnet Substrate, Journal of Composites Science, 6, 203 (2022)
    77. Saeedeh Mokarian Zanjani, Mehmet C. Onbasli, Thin film rare earth iron garnets with perpendicular magnetic anisotropy for spintronic applications, AIP Advances, 9, 035024 (2019)
    78. E. Popova, N. Keller, F. Jomard, L. Thomas, M.-C. Brianso, F. Gendron, M. Guyot, M. Tessier, Exchange coupling in ultrathin epitaxial yttrium iron garnet films, The European Physical Journal B, 31, 69–74 (2003)
    79. Tingyu Su, Properties of Off Stoichiometric Yttrium Iron Garnet, University of Science and Technology, China (2020)

    下載圖示
    QR CODE