研究生: |
林嘉安 Lin, Chia-An |
---|---|
論文名稱: |
探究行動科技輔助字彙學習對高中生聽力理解之成效:結構方程模式之分析 Examining the Effectiveness of Mobile-Assisted Vocabulary Learning in Enhancing Listening Comprehension in Senior High School: A Structural Equation Modeling Approach |
指導教授: |
林至誠
Lin, Chih-cheng |
口試委員: |
林至誠
Lin, Chih-Cheng 黃馨週 Huang, Hsin-Chou 許惠慈 Hsu, Hui-Tzu |
口試日期: | 2024/06/28 |
學位類別: |
碩士 Master |
系所名稱: |
英語學系 Department of English |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 行動科技輔助字彙與聽力學習 、科技接受模式 、結構方程模式 |
英文關鍵詞: | Mobile-assisted listening and vocabulary learning, Technology acceptance model, Structural equation modeling |
DOI URL: | http://doi.org/10.6345/NTNU202401046 |
論文種類: | 學術論文 |
相關次數: | 點閱:99 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聽力對英語為外語的學習者來說是一項基本卻複雜的能力,而字彙是提升聽力的關鍵之一,但學習者常常在單字識別、詞彙應用與理解口語對話上遇到困難。為了幫助學習者習得字彙並提升聽力技巧,多媒體和行動科技輔助語言學習是常用的學習方法。然而,透過結合兩個行動科技輔助語言之應用程式來探索字彙在聽力當中的成效的研究較少。因此,本研究的目的是藉由科技接受模式的理論來檢驗在兩款應用程式-Quizlet和Randall's ESL Cyber Listening Lab的輔助之下,字彙學習能如何提升聽力。
參與本研究的受試者為高中生。進行為期十二週在課堂內外使用Quizlet和Randall's ESL Cyber Listening Lab的字彙與聽力學習後,受試者須填寫問卷,而此問卷包含六個面向-應用程式特色、知覺有用性、知覺易用性、行為意圖、字彙成績及聽力成績。經由偏最小平方法的結構方程模式分析問卷數據後,本研究以測量模式和結構模式呈現研究結果。
研究結果顯示,本研究所提出的模式在測量模式方面確立了各面向的信度及效度。另一方面,在結構模式中,八個假設中有六個得到了支持。在所有假設中,聽力成績受字彙成績的正向影響最顯著,說明了字彙在聽力理解中的重要性。此外,知覺有用性受應用程式特色的正向影響最顯著,解釋了兩款應用程式的結合對學生來說是有用的。最後,行為意圖沒有直接影響聽力成績;然而,透過字彙成績,它間接影響聽力成績,說明了行為意圖需透過字彙學習才能提高聽力成绩。本研究詳細說明了研究结果和討論。最後,本研究提供了使用應用程式來提升字彙及聽力的外語教學建議,以及包含本研究的限制與未來研究方向之建議。
Vocabulary knowledge is the key to improving L2 listening, an essential but complex skill, but learners often struggle with word recognition, applying vocabulary, and interpreting spoken language. To help learners acquire vocabulary and improve listening skills, multimedia and mobile-assisted language learning (MALL) are commonly-used approaches. However, research exploring the role of vocabulary knowledge in listening comprehension by combining two mobile learning applications is little. Thus, the aim of the study is to examine how listening can be enhanced through vocabulary learning with an assistance of two applications, Quizlet and Randall's ESL Cyber Listening Lab, under the framework of technology acceptance model.
Participants were recruited from senior high school. With a twelve-week intervention using Quizlet and Randall's ESL Cyber Listening Lab inside and outside the classroom, participants were required to fill in the scale consisting of six constructs – features of applications, perceived usefulness, perceived ease of use, behavioral intention, vocabulary scores and listening scores. Quantitative data collected from the questionnaire were analyzed by partial-least-squares SEM (PLS-SEM) to provide the measurement model and the structural model.
Results showed that constructs in the proposed model are validated in terms of the measurement model, confirming great reliability and validity. On the other hand, in the structural model, six out of eight hypotheses were supported. Among all the paths, listening scores was positively and significantly influenced by vocabulary scores with a large effect, showing the importance of vocabulary knowledge in listening comprehension. Also, perceived usefulness was positively and significantly influenced by features of applications with a large effect, demonstrating that the combination of the two applications was useful for participants. Last but not least, behavioral intention did not directly influence listening scores; however, through vocabulary scores, it indirectly influenced listening scores, better predicting achievements in listening through vocabulary. Detailed findings and discussion were provided in the paper. Finally, pedagogical implications from this study may shed lights on effects of mobile applications on learning achievements, and limitations and suggestions were included for future research.
Ahmadi Safa, M., & Motaghi, F. (2024). Cognitive vs. metacognitive scaffolding strategies and EFL learners’ listening comprehension development. Language Teaching Research, 28(3), 987-1010. https://doi.org/10.1177/13621688211021821
Alabsi, T. (2020). Effects of adding subtitles to video via apps on developing EFL students' listening comprehension. Theory and Practice in Language Studies, 10(10), 1191-1199. http://dx.doi.org/10.17507/tpls.1010.02
Alalwan, N., Al-Rahmi, W. M., Alfarraj, O., Alzahrani, A., Yahaya, N., & Al-Rahmi, A. M. (2019). Integrated three theories to develop a model of factors affecting students’ academic performance in higher education. Ieee Access, 7, 98725-98742. doi: 10.1109/ACCESS.2019.2928142
Alfadda, H. A., & Mahdi, H. S. (2021). Measuring students’ use of zoom application in language course based on the technology acceptance model (TAM). Journal of Psycholinguistic Research, 50(4), 883-900. https://doi.org/10.1007/s10936-020-09752
Alhadiah, A. (2023). Undergraduate EFL learners’ use and acceptance of mobile-assisted language learning: A structural equation modeling approach. World Journal of English Language, 13(3), 253-253. doi:10.5430/wjel.v13n3p253
Alhatmi, S. (2023). Second language vocabulary learning in the digital era: Ten reasons it should be on the go!. Online Journal of Communication and Media Technologies, 13(3), e202333. https://doi.org/10.30935/ojcmt/13283
Alismaiel, O. A., Cifuentes-Faura, J., & Al-Rahmi, W. M. (2022). Social media technologies used for education: An empirical study on TAM model during the COVID-19 pandemic. Frontiers in Education, 7, 882831. doi: 10.3389/feduc.2022.882831
Almogren, A. S., & Aljammaz, N. A. (2022). The integrated social cognitive theory with the TAM model: The impact of M-learning in King Saud University art education. Frontiers in Psychology, 13, 1050532.
Almusharraf, A., & Bailey, D. (2023). Predicting attitude, use, and future intentions with translation websites through the TAM framework: A multicultural study among Saudi and South Korean language learners. Computer Assisted Language Learning, 1-28. doi: 10.1080/09588221.2023.2275141
Al-Nuaimi, M. N., & Al-Emran, M. (2021). Learning management systems and technology acceptance models: A systematic review. Education and Information Technologies, 26(5), 5499-5533. https://doi.org/10.1007/s10639-021-10513-3
Amadu, L., Muhammad, S. S., Mohammed, A. S., Owusu, G., & Lukman, S. (2018). Using technology acceptance model to measure the ese of social media for collaborative learning in Ghana. JOTSE, 8(4), 321-336. https://doi.org/10.3926/jotse.383
Bai, B., Wang, J., & Chai, C. S. (2021). Understanding Hong Kong primary school English teachers’ continuance intention to teach with ICT. Computer Assisted Language Learning, 34(4), 528-551. doi: 10.1080/09588221.2019.1627459
Baleghi-Zadeh, S., Ayub, A. F. M., Mahmud, R., & Daud, S. M. (2017). The influence of system interactivity and technical support on learning management system utilization. Knowledge Management & E-Learning, 9(1), 50.
Benbasat, I., & Barki, H. (2007). Quo vadis TAM?. Journal of the Association for Information Systems, 8(4), 211-218. doi: 10.17705/1jais.00126
Burston, J. (2015). Twenty years of MALL project implementation: A meta-analysis of learning outcomes. ReCALL, 27(1), 4-20. doi:10.1017/S0958344014000159
Burston, J., & Giannakou, K. (2022). MALL language learning outcomes: A comprehensive meta-analysis 1994–2019. ReCALL, 34(2), 147-168. doi:10.1017/S0958344021000240
Chang, H., Park, J., & Suh, J. (2023). Virtual reality as a pedagogical tool: An experimental study of English learner in lower elementary grades. Education and Information Technologies, 1-34. https://doi.org/10.1007/s10639-023-11988-y
Chen, C. M., Li, M. C., & Lin, M. F. (2022). The effects of video-annotated learning and reviewing system with vocabulary learning mechanism on English listening comprehension and technology acceptance. Computer Assisted Language Learning, 35(7), 1557-1593. doi: 10.1080/09588221.2020.1825093
Cheng, J., & Matthews, J. (2018). The relationship between three measures of L2 vocabulary knowledge and L2 listening and reading. Language Testing, 35(1), 3-25. doi: 10.1177/0265532216676851
Choung, H., David, P., & Ross, A. (2023). Trust in AI and its role in the acceptance of AI technologies. International Journal of Human–Computer Interaction, 39(9), 1727-1739. https://doi.org/10.1080/10447318.2022.2050543
Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98-101. https://doi.org/10.1111/1467-8721.ep10768783
Dağdeler, K. O., Konca, M. Y., & Demiröz, H. (2020). The effect of mobile-assisted language learning (MALL) on EFL learners’ collocation learning. Journal of Language and Linguistic Studies, 16(1), 489-509. https://doi.org/10.17263/jlls.712891
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3) 319-340. doi: 10.2307/249008
Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475-487. https://doi.org/10.1006/imms.1993.1022
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982−1004. https://doi.org/10.1287/mnsc.35.8.982
Dijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297-316. https://www.jstor.org/stable/26628355
Doo, M. Y. (2023). An investigation of the social influence processes of flipped class students: An application of the extension of the technology acceptance model. Education and Information Technologies, 1-21. https://doi.org/10.1007/s10639-023-11878-3
Duong, C. D., Vu, T. N., & Ngo, T. V. N. (2023). Applying a modified technology acceptance model to explain higher education students’ usage of ChatGPT: A serial multiple mediation model with knowledge sharing as a moderator. The International Journal of Management Education, 21(3), 100883. https://doi.org/10.1016/j.ijme.2023.100883
Fithriani, R. (2021). The utilization of mobile-assisted gamification for vocabulary learning: Its efficacy and perceived benefits. Call-Ej, 22(3), 146-163. http://callej.org/journal/22-3/Fithriani2021.pdf
Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440-452. https://doi.org/10.1177/002224378201900406
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
Goh, C. C. (2023). Learners’ cognitive processing problems during comprehension as a basis for L2 listening research. System, 119, 103164. https://doi.org/10.1016/j.system.2023.103164
Golonka, E. M., Bowles, A. R., Frank, V. M., Richardson, D. L., & Freynik, S. (2014). Technologies for foreign language learning: A review of technology types and their effectiveness. Computer Assisted Language Learning, 27(1), 70-105. https://doi.org/10.1080/09588221.2012.700315
Granić, A., & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50(5), 2572-2593. doi: 10.1111/bjet.12864
Ha, H. T. (2021). Exploring the relationships between various dimensions of receptive vocabulary knowledge and L2 listening and reading comprehension. Language Testing in Asia, 11(1), 1-20. https://doi.org/10.1186/s40468-021-00131-8
Habibi, A., Yaakob, M. F. M., & Al-Adwan, A. S. (2023). m-Learning management system use during Covid-19. Information Development, 39(1), 123-135. doi: 10.1177/02666669211035473
Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442-458. doi: 10.1108/IMDS-04-2016-0130
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2018). Multivariate data analysis (8th ed.). United Kingdom: Cengage Learning.
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling. Thousand Oaks, CA: Sage.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
Hanham, J., Lee, C. B., & Teo, T. (2021). The influence of technology acceptance, academic self-efficacy, and gender on academic achievement through online tutoring. Computers & Education, 172, 104252. https://doi.org/10.1016/j.compedu.2021.104252
Hao, T., Wang, Z., & Ardasheva, Y. (2021). Technology-assisted vocabulary learning for EFL learners: A meta-analysis. Journal of Research on Educational Effectiveness, 14(3), 645-667. https://doi.org/10.1080/19345747.2021.1917028
He, X. S., & Loewen, S. (2022). Stimulating learner engagement in app-based L2 vocabulary self-study: Goals and feedback for effective L2 pedagogy. System, 105, 102719. https://doi.org/10.1016/j.system.2021.102719
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In New challenges to international marketing (Vol. 20, pp. 277-319). Emerald Group Publishing Limited.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135. doi: 10.1007/s11747-014-0403-8
Hoi, V. N. (2020). Understanding higher education learners' acceptance and use of mobile devices for language learning: A Rasch-based path modeling approach. Computers & Education, 146, 103761. https://doi.org/10.1016/j.compedu.2019.103761
Houghton, L., & Kerr, D. (2012). Diffusion of innovation theory and the problem of context for inter-organizational information systems: The example of feral information systems. In Kishor V. (Ed.), Inter-organizational information systems and business management: Theories for researchers (pp. 209-221). IGI Global. doi: 10.4018/978-1-60960-768-5.ch013
Hsu, H. T., & Chao, W. N. (2024). Acceptance of mobile-assisted engineering vocabulary learning by military students. Education and Information Technologies, 29(2), 2413-2435. https://doi.org/10.1007/s10639-023-11932-0
Hsu, H. T., & Lin, C. C. (2024). Factors influencing students’ listening learning performance in mobile vocabulary-assisted listening learning: An extended technology acceptance model. Journal of Computer Assisted Learning, 1-15. https://doi.org/10.1111/jcal.12969
Hsu, L. (2023). EFL learners’ self-determination and acceptance of LMOOCs: the UTAUT model. Computer Assisted Language Learning, 36(7) 1177-1205. doi: 10.1080/09588221.2021.1976210
Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424. https://psycnet.apa.org/doi/10.1037/1082-989X.3.4.424
Huang, Y-M., Huang, Y-M., Huang, S-H, & Lin, Y-T. (2012). A ubiquitous English vocabulary learning system: Evidence of active/passive attitudes vs. usefulness/ease-of-use. Computers & Education, 58, 273-282. https://doi.org/10.1016/j.compedu.2011.08.008
Humida, T., Al Mamun, M. H., & Keikhosrokiani, P. (2022). Predicting behavioral intention to use e-learning system: A case-study in Begum Rokeya University, Rangpur, Bangladesh. Education and Information Technologies, 27(2), 2241-2265. https://doi.org/10.1007/s10639-021-10707-9
Hung, Y. H., & Lin, C. C. (2023). Metacognitive strategy instruction and mobile-based exercises for adolescent EFL listeners in Taiwan: 結合後設認知策略與行動科技的聽力教學對臺灣青少年學習英語聽力的影響. English Teaching & Learning, 47(2), 241-262. https://doi.org/10.1007/s42321-022-00112-x
Jensen, C. J., & Cadierno, T. (2024). Differences in mobile-assisted acquisition of receptive and productive vocabulary knowledge: a case study using Mondly. The Language Learning Journal, 52(3), 255-270. https://doi.org/10.1080/09571736.2022.2108123
Jeong, H. I., & Kim, Y. (2017). The acceptance of computer technology by teachers in early childhood education. Interactive Learning Environments, 25(4), 496-512. doi: 10.1080/10494820.2016.1143376
Ji, Z., Yang, Z., Liu, J., & Yu, C. (2019). Investigating users’ continued usage intentions of online learning applications. Information, 10(6), 198. doi:10.3390/info10060198
Jia, C., & Hew, K. F. T. (2022). Supporting lower-level processes in EFL listening: The effect on learners’ listening proficiency of a dictation program supported by a mobile instant messaging app. Computer Assisted Language Learning, 35(1-2), 141-168. doi: 10.1080/09588221.2019.1671462
Jiang, P., Wijaya, T. T., Mailizar, M., Zulfah, Z., & Astuti, A. (2022). How micro-lectures improve learning satisfaction and achievement: A combination of ECM and extension of TAM models. Mathematics, 10(19), 3430. https://doi.org/10.3390/math10193430
Kessler, M., Loewen, S., & Gönülal, T. (2023). Mobile-assisted language learning with Babbel and Duolingo: Comparing L2 learning gains and user experience. Computer Assisted Language Learning, 1-25. https://doi.org/10.1080/09588221.2023.2215294
Khoa, B. T., Ha, N. M., Nguyen, T. V. H., & Bich, N. H. (2020). Lecturers' adoption to use the online Learning Management System (LMS): Empirical evidence from TAM2 model for Vietnam. Ho Chi Minh City Open University Journal of Science-Economics and Business Administration, 10(1), 3-17. doi: 10.46223/HCMCOUJS. econ.en.10.1.216.2020
Kline, R. B. (2016). Principles and practice of structural equation modeling. New York: The Guilford Press.
Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS‐SEM: The inverse square root and gamma‐exponential methods. Information Systems Journal, 28(1), 227-261. doi: 10.1111/isj.12131
Kondo-Brown, K. (2002). A FACETS analysis of rater bias in measuring Japanese second language writing performance. Language Testing, 19(1), 3-31. https://doi.org/10.1191/0265532202lt218oa
Kukulska-Hulme, A., Lee, H., & Norris, L. (2017). Mobile learning revolution: Implications for language pedagogy. In C. A. Chapelle, & S. Sauro (Eds.), The handbook of technology and second language teaching and learning (233 vol., p. 217). John Wiley & Sons. https://doi.org/10.1002/9781118914069.
Li, R. (2023). Effects of mobile-assisted language learning on EFL learners’ listening skill development. Educational Technology & Society, 26(2), 36-49. https://doi.org/10.30191/ETS.202304_26(2).0003
Li, Y., & Hafner, C. A. (2022). Mobile-assisted vocabulary learning: Investigating receptive and productive vocabulary knowledge of Chinese EFL learners. ReCALL, 34(1), 66-80. doi:10.1017/S0958344021000161
Li, Y., & Zhang, X. (2019). L2 vocabulary knowledge and L2 listening comprehension: A structural equation model. Canadian Journal of Applied Linguistics, 22(1), 85-102. https://doi.org/10.7202/1060907ar
Lin, J. J., & Lin, H. (2019). Mobile-assisted ESL/EFL vocabulary learning: A systematic review and meta-analysis. Computer Assisted Language Learning, 32(8), 878-919. doi: 10.1080/09588221.2018.1541359
Liu, G., & Ma, C. (2023). Measuring EFL learners’ use of ChatGPT in informal digital learning of English based on the technology acceptance model. Innovation in Language Learning and Teaching, 1-14. doi: 10.1080/17501229.2023.2240316
Luan, N. T., Duyen, N. T. M., Khoa, N. N., & Dien, N. N. (2023). Perceptions of university students on using Quizlet in self-study. TEM Journal, 12(3), 1706-1712. doi: 10.18421/TEM123-52
Luo, Y., Song, H., Wan, L., & Zhang, X. (2021). The effect of vocabulary depth and breadth on English listening comprehension can depend on how comprehension is measured. Frontiers in Psychology, 12, 657573. doi: 10.3389/fpsyg.2021.657573
MacIntyre, P. D., Noels, K. A., & Clément, R. (1997). Biases in self‐ratings of second language proficiency: The role of language anxiety. Language Learning, 47(2), 265-287. https://doi.org/10.1111/0023-8333.81997008
Mahdi, H. S. (2018). Effectiveness of mobile devices on vocabulary learning: A meta-analysis. Journal of Educational Computing Research, 56(1), 134-154. doi: 10.1177/0735633117698826
Malatji, W. R., Eck, R. V., & Zuva, T. (2020). Understanding the usage, modifications, limitations and criticisms of technology acceptance model (TAM). Advances in Science, Technology and Engineering Systems Journal, 5(6), 113-117. doi: 10.25046/aj050612
Masrai, A. (2020). Exploring the impact of individual differences in aural vocabulary knowledge, written vocabulary knowledge and working memory capacity on explaining L2 learners’ listening comprehension. Applied Linguistics Review, 11(3), 423-447. https://doi.org/10.1515/applirev-2018-0106
Masrai, A. (2022). The relationship between two measures of L2 phonological vocabulary knowledge and L2 listening comprehension. TESOL Journal, 13(1), e612. doi: 10.1002/tesj.612
Masykuri, E. S. (2022). Technology effect of EFL listening comprehension to teacher during pandemic. Journal of English Teaching and Learning Issues, 5(1), 51-62. doi: 10.21043/jetli.v5i1.13913
Matthews, J. (2018). Vocabulary for listening: Emerging evidence for high and mid-frequency vocabulary knowledge. System, 72, 23-36. https://doi.org/10.1016/j.system.2017.10.005
Matthews, J., & Cheng, J. (2015). Recognition of high frequency words from speech as a predictor of L2 listening comprehension. System, 52, 1-13. http://dx.doi.org/10.1016/j.system.2015.04.015
McCoy, S., Galletta, D. F., & King, W. R. (2007). Applying TAM across cultures: The need for caution. European Journal of Information Systems, 16(1), 81-90. doi: 10.1057/palgrave.ejis.3000659
Meet, R. K., Kala, D., & Al-Adwan, A. S. (2022). Exploring factors affecting the adoption of MOOC in Generation Z using extended UTAUT2 model. Education and Information Technologies, 27(7), 10261-10283. https://doi.org/10.1007/s10639-022-11052-1
Meletiadou, E. (2023). Experimenting with AI-powered learning tools and mobile-assisted learning to improve student learning performance, autonomy, and metacognitive skills: A case study of Quizlet. In Handbook of Research on Redesigning Teaching, Learning, and Assessment in the Digital Era (pp. 21-41). IGI Global. doi: 10.4018/978-1-6684-8292-6.ch002
Mizher, R. A., & Alwreikat, A. A. (2023). EFL students’ use of e-books for e-learning: Applying technology acceptance model (TAM). Journal of Language Teaching and Research, 14(1), 153-162. https://doi.org/10.17507/jltr.1401.16
Mujiono. (2023). Mobile-assisted language learning intervention and its effect on English language proficiency of EFL learners: A meta-analysis. Theory and Practice in Language Studies, 13(5), 1124-1135. https://doi.org/10.17507/tpls.1305.05
Mulyadi, D., Aimah, S., Arifani, Y., & Swaran Singh, C. K. (2022). Boosting EFL learners’ listening comprehension through a developed mobile learning application: Effectiveness and practicality. Applied Research on English Language, 11(3), 37-56. doi: 10.22108/ARE.2022.130726.1785
Mustafa, A. S., & Garcia, M. B. (2021). Theories integrated with technology acceptance model (TAM) in online learning acceptance and continuance intention: A systematic review. In 2021 1st Conference on online teaching for mobile education (OT4ME) (pp. 68-72). IEEE. doi: 10.1109/OT4ME53559.2021.9638934
Musyaffi, A. M., Sulistyowati, W. A., Wolor, C. W., & Sasmi, A. A. (2022). Game-based learning sustainability during social distance: The role of gamification quality. European Journal of Educational Research, 11(3), 1289-1302. https://doi.org/10.12973/eu-jer.11.3.1289
Naidoo, D. T. (2023). Integrating TAM and IS success model: Exploring the role of blockchain and AI in predicting learner engagement and performance in e-learning. Frontiers in Computer Science, 5, 1227749. doi: 10.3389/fcomp.2023.1227749
Nation, P. (2019). The different aspects of vocabulary knowledge. In The Routledge handbook of vocabulary studies (pp. 15-29). Routledge.
National Academy for Educational Research. (2018). Curriculum guidelines of 12-year basic education for elementary school, junior high and general senior high schools: Subject of English in the domain of language. Ministry of Education. https://www.naer.edu.tw/eng/PageSyllabus?fid=148
Nguyen, L. Q., & Le, H. V. (2023). Enhancing L2 learners’ lexical gains via Quizlet learning tool: the role of individual differences. Education and Information Technologies, 28(9), 12143-12167. https://doi.org/10.1007/s10639-023-11673-0
Poláková, P., Klímová, B., & Pražák, P. (2021). Vocabulary improvement by using smart mobile application—A pilot study. Studies in Systems, Decision and Control, 295, 197-208. https://doi.org/10.1007/978-3-030-47411-9_11
Rafique, H., Almagrabi, A. O., Shamim, A., Anwar, F., & Bashir, A. K. (2020). Investigating the acceptance of mobile library applications with an extended technology acceptance model (TAM). Computers & Education, 145, 103732. https://doi.org/10.1016/j.compedu.2019.103732
Rahman, S. F. A., Yunus, M., & Hashim, H. (2019). A technology acceptance model (TAM): Malaysian ESL lecturers' attitude in adapting flipped learning. Malaysian Journal of Education (0126-6020), 44. http://dx.doi.org/10.17576/JPEN-2019-44.01SI-04
Rodrigues, L., Pereira, F. D., Toda, A. M., Palomino, P. T., Pessoa, M., Carvalho, L. S. G., ... & Isotani, S. (2022). Gamification suffers from the novelty effect but benefits from the familiarization effect: Findings from a longitudinal study. International Journal of Educational Technology in Higher Education, 19(1), 13. https://doi.org/10.1186/s41239-021-00314-6
Şad, S. N., Özer, N., Yakar, Ü., & Öztürk, F. (2022). Mobile or hostile? Using smartphones in learning English as a foreign language. Computer Assisted Language Learning, 35(5-6), 1031-1057. https://doi.org/10.1080/09588221.2020.1770292
Sadeck, O. (2022). Technology adoption model: Is use/non-use a case of technological affordances or psychological disposition or pedagogical reasoning in the context of teaching during the Covid-19 pandemic period?. Frontiers in Education, 7, 906195. doi: 10.3389/feduc.2022.906195
Sejdiu, S. (2017). Are listening skills best enhanced through the use of multimedia technology. Digital Education Review, 32, 60-72. https://doi.org/10.1344/der.2017.32.60-72
Setiawan, M. R., & Wiedarti, P. (2020). The effectiveness of Quizlet application towards students’ motivation in learning vocabulary. Studies in English Language and Education, 7(1), 83-95. doi:10.24815/siele.v7i1.15359
Shi, D., & Maydeu-Olivares, A. (2020). The effect of estimation methods on SEM fit indices. Educational and Psychological Measurement, 80(3), 421-445. doi: 10.1177/0013164419885164
Shin, W. S., & Kang, M. (2015). The use of a mobile learning management system at an online university and its effect on learning satisfaction and achievement. International Review of Research in Open and Distributed Learning, 16(3), 110-130. https://doi.org/10.19173/irrodl.v16i3.1984
Soyoof, A., Reynolds, B. L., Shadiev, R., & Vazquez-Calvo, B. (2024). A mixed-methods study of the incidental acquisition of foreign language vocabulary and healthcare knowledge through serious game play. Computer Assisted Language Learning, 37(1-2), 27-60. https://doi.org/10.1080/09588221.2021.2021242
Stæhr, L. S. (2009). Vocabulary knowledge and advanced listening comprehension in English as a foreign language. Studies in Second Language Acquisition, 31(4), 577-607. doi:10.1017/S0272263109990039
Suzuki-Parker, J., & Duarte, A. (2024). Independent use of Quizlet among Japanese EFL students: Adoption rates, usage, and predictors. Computer-Assisted Language Learning Electronic Journal, 25(1), 64-83.
Teepe, R. C., Molenaar, I., & Verhoeven, L. (2017). Technology‐enhanced storytelling stimulating parent–child interaction and preschool children's vocabulary knowledge. Journal of Computer Assisted Learning, 33(2), 123-136. doi: 10.1111/jcal.12169
Vandergrift, L. (2007). Recent developments in second and foreign language listening comprehension research. Language Teaching, 40(3), 191-210. doi:10.1017/S0261444807004338
Vandergrift, L., & Baker, S. (2015). Learner variables in second language listening comprehension: An exploratory path analysis. Language Learning, 65(2), 390-416. https://doi.org/10.1111/lang.12105
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. http://dx.doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
Waluyo, B., & Bucol, J. L. (2021). The impact of gamified vocabulary learning using Quizlet on low-proficiency students. Computer Assisted Language Learning, 22(1), 158-179.
Wang, S. (2015). An empirical study on the role of vocabulary knowledge in EFL listening comprehension. Theory and Practice in Language Studies, 5(5), 989-995. doi: 10.17507/tpls.0505.14
Wang, Y. (2023). Explaining L2 learners' listening comprehension: The role of aural vocabulary knowledge. Sintagma, 35, 103-118. doi: 10.21001/sintagma.2023.35.07
Xodabande, I., & Hashemi, M. R. (2023). Learning English with electronic textbooks on mobile devices: Impacts on university students’ vocabulary development. Education and Information Technologies, 28(2), 1587-1611. https://doi.org/10.1007/s10639-022-11230-1
Ye, S. X. & Shi, J. (2023). Investigating the potential of changing the smartphone system language to L2 for facilitating vocabulary learning and motivation. Language Teaching Research, 13621688221145565. https://doi.org/10.1177/13621688221145565
Yu, A., & Trainin, G. (2022). A meta-analysis examining technology-assisted L2 vocabulary learning. ReCALL, 34(2), 235-252. doi:10.1017/S0958344021000239
Yu, H., Wang, S., Li, J., Shi, G., & Yang, J. (2022). Influence of online merging offline method on university students’ active learning through learning satisfaction. Frontiers in Psychology, 13, 842322. doi: 10.3389/fpsyg.2022.842322
Zhai, N., & Ma, X. (2022). Automated writing evaluation (AWE) feedback: A systematic investigation of college students’ acceptance. Computer Assisted Language Learning, 35(9), 2817-2842. https://doi.org/10.1080/09588221.2021.1897019
Zhang, P., & Graham, S. (2020). Learning vocabulary through listening: The role of vocabulary knowledge and listening proficiency. Language Learning, 70(4), 1017-1053. doi: 10.1111/lang.12411
Zhang, S., & Zhang, X. (2022). The relationship between vocabulary knowledge and L2 reading/listening comprehension: A meta-analysis. Language Teaching Research, 26(4), 696-725. doi: 10.1171/1362168820913998