研究生: |
楊家驊 YANG, CHIA-HUA |
---|---|
論文名稱: |
國小六年級學生對於科學探究本質之認識 Sixth Graders' Understandings of the Nature of Scientific Inquiry |
指導教授: |
劉湘瑤
Liu, Shiang-Yao |
口試委員: |
劉湘瑤
Liu, Shiang-Yao 林淑梤 LIN, SHU-FEN 林陳涌 LIN, CHEN-YUNG |
口試日期: | 2023/01/04 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 科學探究 、科學探究本質 、自然科學領域 |
英文關鍵詞: | Scientific Inquiry, Nature of Scientific Inquiry, Domain of Natural Science |
DOI URL: | http://doi.org/10.6345/NTNU202300062 |
論文種類: | 學術論文 |
相關次數: | 點閱:131 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討六年級學生對於科學探究本質的認識情形,透過問卷了解學生對於各個探究本質的認識觀,可用於未來教師修正教學需注意之教學重點。本研究分兩階段,第一階段透過開放性問卷進行,針對211位六年級學生進行施測,透過學生的回答依評分規準進行分析,挑選出合適的受試者進行抽測訪談,進入第二階段透過受測者於問卷上的回答,依其答案之脈絡提問,了解受測者確切的想法,其中訪談的架構透過問卷進行半結構式訪談。本研究所使用Lederman等人 (2014, 2019)所提出的「關於科學探究觀點問卷(Views About Scientific Inquiry questionnaire,簡稱VASI)」,建立8項學生須具備對於科學探究本質的概念。在問卷的修改上以貼近國小六年級學生生活情境為出發點,像是研究者觀察到學生平常有沖泡熱可可的習慣,因此將問卷中輪胎的情境修改為沖泡熱飲,使學生在答題上有更多的共鳴。本研究在「研究結論必須與收集的數據一致」的科學探究觀中是相對成熟的觀點,以38%了解型、37%混合型、24%質樸型分佈比例。而「做解釋是結合收集的數據和已知的知識得出的」以14%了解型、41%混合型及44%質樸型分佈比例及「所有科學研究中沒有一套單一的步驟和順序(無單一科學方法)」以10%了解型、45%混合型、44%質樸型之分佈比例之科學探究觀是相對不成熟的的觀點。此外,研究結果發現,性別差異僅在「探究過程以提問的問題為引導」及「所有做出過程相同的科學家可能不會得出相同的結論」這兩個向度,且女生的觀點較男生成熟。翻閱教科書後發現,多數課本出現固定流程的科學研究方法,與大多數受測者處於混合型或是質樸型的觀點相符合。本研究針對教科書中以傳統驗證假設為目標進行科學探究或是科學實驗的內容提出評論,並建議科學教師在未來的教學上需要著墨設計探究觀點融入教學,並持續進修以建立適當的科學探究本質觀點及教學能力。
The purpose of this study is to explore sixth-grade elementary school students' understandings of the nature of scientific inquiry. An adapted version of the Views about Scientific Inquiry (VASI) questionnaire was used as the research instrument to examine students' conceptions of each scientific inquiry. The Views about Scientific Inquiry (VASI) questionnaire was developed by Lederman et al. (2014), which established eight essential aspects of scientific inquiry that students need. This research was divided into two parts. First, the questionnaire with open-ended questions was administered to 211 sixth-grade elementary school students. Based on the preliminary analysis of the questionnaire responses, the participants were purposefully selected for the second part of the research. Next, a semi-structured interview was conducted based on the participant's answer to the questionnaire to clarify the participants' conceptions. The findings contribute to discovering vague concepts students have on the nature of scientific inquiry and enabling teachers to modify their teaching. Among the eight aspects of the nature of scientific inquiry. In modifying the questionnaire, the starting point is to be close to the living situation of the sixth grade students in elementary school. For example, the researcher observed that the students usually have the habit of brewing hot cocoa, so they changed the situation of tires in the questionnaire to brewing hot drinks, so that students can answer the questions There are more vibes. students’ views of the aspect of “Research conclusions must be consistent with the data collected” are relatively mature, with the distribution ratio of 38% informed, 37% mixed and 24% naïve. Their views on the aspect of "Explanations are developed from a combination of collected data and what is already known" are relatively immature, with the distribution ratio of 14% informed, 41% mixed and 44% naïve. And "There is no single set and sequence of steps followed in all scientific investigations (i.e., there is no single scientific method)" are relatively immature, with the distribution ratio of 10% informed, 45% mixed and 44% naïve. Furthermore, the research discovered that gender difference only appears in “Inquiry procedures are guided by the question asked” and “All scientists performing the same procedures may not get the same conclusions”, and females are more mature than males. Upon reviewing textbook under 108 Curriculum Guidelines, most textbooks depict fixed procedure for scientific research, which matches the findings that most students’ viewpoints were mixed or naïve. This research intends to criticize the units in current science textbooks that focus mainly on the hypothetic-deductive method of scientific experiments. It also suggests that science teachers should incorporate view about science inquiry in science teaching and improve their own understandings about the nature of scientific inquiry and abilities to teach it through professional development.
王靜如,周金燕,蔡瑞芬(2006)。國小教師科學教學基準系列報導 (二) 科學本質與科學探究。屏東教大科學教育,(23),3-17。
中華人民共和國教育部(2017)。义务教育小学科学课程标准。上網日期:2022年 10 月 15 日,http://www.moe.gov.cn/srcsite/A26/s8001/201702/t20170215_296305.html。
江惠真(2017)。論產業和大學的教育分工。臺灣教育評論月刊, 6(8), 23-25
李驥,邱美虹(2019)。NGSS 和 12 年國民基本教育中探究, 實作和建模的比較與分析。科學教育月刊,(421),19-31。
李秀菊. (2017). 《 义务教育小学科学课程标准》 发布——校外科学教育的机遇与挑战. 中国科技教育, (5), 6-7.
邱美虹(2000)。評介美國評量新標準: 科學實作部分。科學教育月刊,(288),2-15。
邱美虹(2016)。科學模型與建模: 科學素養中的模型認知與建模能力,臺灣化學教育電子期刊,(11)。
南一書局(2022)。國民小學三年級上學期自然課本。上網日期:2022年 10 月 15 日,https://onebox2.oneclass.com.tw/fileDownload。
南一書局(2022)。國民小學四年級上學期自然課本。上網日期:2022年 10 月 15 日,https://onebox2.oneclass.com.tw/fileDownload。
封中興(2012)。建模導向的探究模式對八年級學生辨識科學探究成份能力之影響。中等教育。
洪振方(2010)。思考導向的探究式學習對國二學生科學探究能力的影響。科學教育學刊,18(5),389-415。
高慧蓮(2005)。九年一貫課程「自然與生活科技領域」科學探究能力之培養研究-科學探究能力之評量(II)( NSC 94-2511-S-153-00)。臺北市:行政院國家科學委員會。
教育部(2000)。國民中小學九年一貫課程總綱。台北:教育部。
教育部(2002)。全國第一次科學教育會議資料。台北:教育部。
教育部國民中小學課程與教學資源整合平臺(2019)。十二年國民基本教育課程綱要 總綱宣講(第六版)。上網日期:2021年 1 月 8 日,https://cirn.moe.edu.tw/WebContent/index.aspx?sid=11&mid=8565。
教育部國民中小學課程與教學資源整合平臺(2018)。自然領域課程綱要。上網日期:2021年 1 月 2 日,https://cirn.moe.edu.tw/WebContent/index.aspx?sid=11&mid=6852。
教育部國民中小學課程與教學資源整合平臺(2015)。自然領域課程綱要。上網日期:2021年 1 月 2 日,https://cirn.moe.edu.tw/WebContent/index.aspx?sid=9&mid=265。
國教院(2015)。 十二年國教總綱。 臺灣:教育部。
國家教育研究院(2014)。十二年國民基本教育課程發展指引。檢自: https://www.naer.edu.tw/ezfiles/0/1000/attach/93/pta_2558_5536793_14183.pdf。
康軒書局(2022)。國民小學三年級上學期自然課本。上網日期:2022年 10 月 15 日,https://945cloud.knsh.com.tw/Resource.asp?EJ=E&Course=3&Page=1&PageNum=30&Pse=111%E5%AD%B8%E5%B9%B4%E4%B8%8A%E5%AD%B8%E6%9C%9F&Pma=24&Pgr=3%E4%B8%8A&Pca=%E6%95%99%E5%B8%AB%E6%89%8B%E5%86%8A&Pks=。
魏明通(1997)。評介美國國家科學教育標,科學教育月刊,196期,23-32頁。
翰林書局(2022)。國民小學三年級下學期自然課本。上網日期:2022年 10 月 15 日,https://edisc3.hle.com.tw/edisc_v3/gwty_v2023.html#year=110%E4%B8%8B°ree=%E5%9C%8B%E5%B0%8F&cat=%E8%87%AA%E7%84%B6&prd=ENA&grade=%E5%85%A8%E5%B9%B4%E7%B4%9A&code1=ENA5。
翰林書局(2022)。國民小學三年級上學期自然課本。上網日期:2022年 10 月 15 日,https://edisc3.hle.com.tw/edisc_v3/gwty_v2023.html#year=110%E4%B8%8B°ree=%E5%9C%8B%E5%B0%8F&cat=%E8%87%AA%E7%84%B6&prd=ENA&grade=%E5%85%A8%E5%B9%B4%E7%B4%9A&code1=ENA5。
Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers' conceptions of nature of science: A critical review of the literature. International journal of science education, 22(7), 665-701.
Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353-374.
Akerson, V. L., Abd‐El‐Khalick, F., & Lederman, N. G. (2000). Influence of a reflective explicit activity‐based approach on elementary teachers' conceptions of nature of science. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(4), 295-317.
American Association for the Advancement of Science [AAAS]. (1990). Science for all Americans: Project 2061. New York: Oxford University Press.
American Association for the Advancement of Science (1993). Benchmarks for science literacy. New York: Oxford University Press.
Baillargeon, R. (2004). How do infants learn about the physical world? . Current Directions in Psychological Science, 3, 133-140.
BKuhn, L., & Reiser, B. (2004). Students constructing and defending evidence-based scientific explanations. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Dallax, TX.
Bybee, R., & Goodrum, D. (1999). Teaching science as inquiry.
Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86, 175-219.
Cohen, L.B., and Chashon, C.H. (2006). Infant cognition. In W. Damon and R.M. Lerner (Eds.), Handbook of Child Psychology, Set, 6th Edition (Chapter 5, vol. 2). Hoboken, NJ: Wiley.
Concannon, J. P., Brown, P. L., Lederman, N. G., & Lederman, J. S. (2020). Investigating the development of secondary students’ views about scientific inquiry. International Journal of Science Education, 42(6), 906-933.
Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary educational psychology, 29(2), 186-204.
Crawford, B. A. (2014). From inquiry to scientific practices in the science classroom. In Handbook of research on science education, volume II (pp. 529-556). Routledge.
Cui, Y., & Zhu, Y. (2014). Curriculum reforms in China: history and the present day. Revue internationale d’éducation de Sèvres.
Dello-Iacovo, B. (2009). Curriculum reform and ‘quality education’in China: An overview. International journal of educational development, 29(3), 241-249.
Dunbar, K. (2001). What scientific thinking reveals about the nature of cognition. Designing for science: Implications from everyday, classroom, and professional settings, 115-140.
Etheredge, S., & Rudnitsky, A. N. (2003). Introducing students to scientific inquiry: How do we know what we know?. Allyn & Bacon, Boston.
Flick, L., & Lederman, N. G. (2004). Scientific inquiry and nature of science. Contemporary Trends and Issues in Science Education, 67.
Gibbs, A., & Lawson, A. E. (1992). The nature of scientific thinking as reflected by the work of biologists & by biology textbooks. The American Biology Teacher, 54(3), 137-152.
Gaigher, E., Lederman, N., & Lederman, J. (2014). Knowledge about inquiry: A study in South African high schools. International Journal of Science Education, 36(18), 3125-3147.
Guo, L. (2013). New curriculum reform in China and its impact on teachers. Comparative and International Education, 41(2).
Hammer, D., & Elby, A. (2009). Tapping epistemological resources for learning physics. Journal of the Learning Sciences, 12(1), 53–90. https://doi.org/10.1207/S15327809JLS1201_3
Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. Transfer of learning from a modern multidisciplinary perspective, 89.
Hodson, D. (1999). Going beyond cultural pluralism: Science education for sociopolitical action. Science education, 83(6), 775-796.
Horner, J. K., & Rubba, P. (1978). The myth of absolute truth. Science Teacher, 45(1), 29-30.
Huang, F. (2004). Curriculum reform in contemporary China: Seven goals and six strategies. Journal of curriculum studies, 36(1), 101-115.
Hudicourt-Barnes, J. (2001). Bay odyans: Argumentation in Haitian Creole classrooms. Hands On!, 24(2), 7-9.
Lederman, N. G., Abd‐El‐Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of research in science teaching, 39(6), 497-521
Lederman, N. G., & Lederman, J. S. (2004). Project ICAN: a professional development project to promote teachers’ and students knowledge of nature of science and scientific inquiry. In Proceedings of the 12th annual conference of the Southern African Association for research in Mathematics, Science and technology education. Durban: SAARMSTE.
Lederman, N. G. (2006). Research on nature of science: Reflections on the past, anticipations of the future. In Asia-Pacific Forum on Science Learning and Teaching, 7, (1). Retrieved July 13, 2012, from http:// www.ied.edu.hk/apfslt/v7 issue1/foreword/index.htm
Lederman, N. G., Antink, A., & Bartos, S. (2012). Nature of science, scientific inquiry, and socio- scientific issues arising from genetics: A pathway to developing a scientifically literate citizenry. Science & Education, doi: 10.1007/s11191-012-9503-3.
Lederman, N. G. (2013). Nature of science: Past, present, and future. In Handbook of research on science education (pp. 845-894). Routledge.
Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners' understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of research in science teaching, 51(1), 65-83.
Lederman, N. G., & Lederman, J. S. (2014). Research on teaching and learning of nature of science. In Handbook of research on science education, volume II (pp. 614-634). Routledge.
Lederman, J., Lederman, N., Bartels, S., Jimenez, J., Akubo, M., Aly, S., ... & Zhou, Q. (2019). An international collaborative investigation of beginning seventh grade students' understandings of scientific inquiry: Establishing a baseline. Journal of Research in Science Teaching, 56(4), 486-515.
Lederman, J. S., Lederman, N. G., Bartels, S., Jimenez, J., Acosta, K., Akubo, M., ... & Wishart, J. (2021). International collaborative follow-up investigation of graduating high school students’ understandings of the nature of scientific inquiry: is progress Being made?. International Journal of Science Education, 43(7), 991-1016.
Lin, P. J. (2006). Conceptualizing teachers' understanding of students' mathematical learning by using assessment tasks. International Journal of Science and Mathematics Education, 4(3), 545-580.
Lopushinsky, T. (1993). Does science deal in truth?. Journal of College Science Teaching, 208-208.
Munakata, Y., Casey, B.J., and Diamond, A. (2004). Developmental cognitive neuroscience: Progress and potential. Trends in Cognitive Science, 8, 122-128.
National Academy of Sciences, (2002). Guiding principles for scientific inquiry. In Scientific research in education. www.nap.edu/openbook/03090829/html
National Research Council (US). National Committee on Science Education Standards, & Assessment. (1994). National Science Education Standards: Draft for Review and Comment Only. National Research Council.
National Research Council. (1996). National science education standards. National Academies Press.
National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.
Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.
Pearson, K., & Pearson, E. S. (1937). The Grammar of Science.[Edited by Egon S. Pearson.]. JM Dent & Sons.
Popper, K. R. (1968). The Logic of Scientific Discovery.(Revised Edition.). Hutchinson.
Ross, N., Medin, D., Coley, J.D., and Atran, S. (2003). Cultural and experiential differences in the development of folk biological induction. Cognitive Development, 18(1), 25-47.
Sandoval, W. A. (2003). Conceptual and epistemic aspects of students' scientific explanations. The journal of the learning sciences, 12(1), 5-51.
Schmidt, W.H., McKnight, C.C., and Raizen, S. (1997). A Splintered Vision: An Investigation of U.S. Science and Mathematics Education. Executive Summary. Wisconsin Teacher of Mathematics, 48(2), 4-9.
Schwartz, R. S., Lederman, N. G., Khishfe, R., Lederman, J. S., Matthews, L., & Liu, S. Y. (2002). Explicit/Reflective Instructional Attention to Nature of Science and Scientific Inquiry: Impact on Student Learning
Schwartz, R. S., & Crawford, B. A. (2006). Authentic scientific inquiry as context for teaching nature of science: Identifying critical element. In Scientific inquiry and nature of science (pp. 331-355). Springer, Dordrecht.
Schwartz, R. S., Lederman, N. G., & Lederman, J. S. (2008). An instrument to assess views of scientific inquiry: the VOSI questionnaire, National Association for Research in Science Teaching, March 30–April 2, 2008. Baltimore, U.S.
Schwartz, R., & Lederman, N. (2008). What scientists say: Scientists’ views of nature of science and relation to science context. International Journal of Science Education, 30(6), 727-771.
Senler, B. (2015). Middle School Students' Views of Scientific Inquiry: An International Comparative Study. Science Education International, 26(2), 166-179.
Songer, N. B., & Ho, P. S. (2005). Guiding the “explain”: A modified learning cycle approach towards evidence on the development of scientific explanations. In Annual Meeting of the American Education Research Association, Montreal, Canada.
Tarlowski, A. (2006). If it’s an animal it has axons: Experience and culture in preschool children’s reasoning about animates. Cognitive Development, 21(3), 249-265.
Tobias, S. (1990). They're not dumb, they're different (Vol. 101). Tucson, AZ: Research Corporation.
Tsai, C. C., & Liu, S. Y. (2005). Developing a multi‐dimensional instrument for assessing students’ epistemological views toward science. International Journal of Science Education, 27(13), 1621-1638.
Windschitl, M. (2004). Folk Theories of “Inquiry:” How preservice teachers reproduce the discourse and practices of an atheoretical scientific method. Journal of Research in Science Teaching, 41(5), 481-512.
Yang, I. H., Park, S. W., Shin, J. Y., & Lim, S. M. (2017). Exploring Korean middle school students’ view about scientific inquiry. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3935-3958.
Yao, J. X., & Guo, Y. Y. (2018). Core competences and scientific literacy: the recent reform of the school science curriculum in China. International Journal of Science Education, 40(15), 1913-1933.
Yoo, H. J., Park, J., Lederman, J. S., Lederman, N. G., Bartels, S., & Jimenez, J. (2021). Korean Elementary Students' Understanding about Scientific Inquiry using VASI-E Questionnaire. Journal of The Korean Association For Science Education, 41(2), 83-92.