簡易檢索 / 詳目顯示

研究生: 潘冠廷
Pan, Kuan-Ting
論文名稱: 臺北市山坡地人工邊坡災害風險空間統計與分析
The spatial statistics and analysis of man-made slope disaster risk in hillside areas of Taipei City
指導教授: 陳哲銘
Chen, Che-Ming
口試委員: 陳哲銘
Chen, Che-Ming
沈淑敏
Shen, Su-Min
楊國鑫
Yang, Kuo-Hsin
口試日期: 2024/06/24
學位類別: 碩士
Master
系所名稱: 地理學系空間資訊碩士在職專班
Department of Geography_Continuing Education Master's Program of Geospatial Information Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 77
中文關鍵詞: 臺北市人工邊坡邊坡災害空間分析
英文關鍵詞: Taipei City, Man-made Slopes, Slope Disaster, Spatial Analysis
研究方法: 次級資料分析
DOI URL: http://doi.org/10.6345/NTNU202400834
論文種類: 學術論文
相關次數: 點閱:193下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺北市面積約為27,180公頃,而山坡地有15,004公頃,占總面積55%。因臺北市為盆地地形,高度都市化之下,平地不敷使用,進而往周邊山坡地進行開發。開發坡地時則會透過建造擋土設施,創造使用空間,及維護環境穩定安全。本研究「人工邊坡」一詞,為經過人為挖填、整地所形成,且具擋土或護坡設施之邊坡。

    人工邊坡有其使用年限,如未善加維護管理,對於坡地安全的影響甚鉅;並且臺北市山坡地地質環境複雜,加上近來年在氣候變遷之下,極端降雨更加頻繁,所引起邊坡崩塌之事件逐漸增加,每次事件的發生,都突顯山坡地人工邊坡管理,以及災害預防之重要性。因此臺北市政府於民國99年開始至民國103年,分階段進行全市山坡地範圍內人工邊坡調查建檔作業共計有三萬四千餘筆,其風險等級由高至低分為五個等級,針對不同風險等級與現況之人工邊坡,訂定後續因應對策與機制。

    本研究利用臺北市普查之三萬多筆資料,首先透過敘述統計,了解人工邊坡基本特性及風險徵兆因子數量樣態,結果顯示護坡型人工邊坡其總數與徵兆數量,占整體相當大的比例;爾後針對其風險評分較高之高風險邊坡進行空間分析,首先核密度分析得知位於文山區及北投區有較明顯群聚,進一步透過熱區分析發現,位於北投區大屯山一帶及文山區為明顯之熱區,並以空間自相關分析發現高風險評分之人工邊坡具有高度空間相關性,且較明顯群聚區域亦位於北投區、士林區與文山區。後續以敘述統計之成果,以及相關文獻篩選環境因子與徵兆因子自變數,並將風險評分高低與否為依變數,進行羅吉斯迴歸統計。經研究發現,邊坡坡面破損之徵兆對於風險評分高低有顯著影響。

    人工邊坡調查迄今已近10年,邊坡現況是否與當時相符,抑或風險提升,需重新普查確認,但時間與人力為現階段面臨的課題。若將研究成果應用於管理實務,先以熱區分析之相關特定地區及有特殊徵兆之邊坡進行彙整,分年度執行抽查工作,檢視其風險等級之變化,後續進行滾動修正調整標的,或許能有減輕人力與加快普查時程之效益。

    The area of Taipei City is approximately 27,180 hectares, with slopes covering 15,004 hectares, accounting for 55% of the total area. Due to Taipei's basin terrain and high urbanization, flat land is insufficient, leading to development extending into surrounding slopes. When developing these slopes, retaining structures are constructed to create usable space and ensure environmental stability and safety. In this study, "artificial slopes" refer to slopes formed through excavation, filling, and landscaping, equipped with retaining or slope protection facilities.

    Man-made slopes have a limited lifespan, and inadequate maintenance can significantly impact slope safety. Taipei City's mountainous terrain has complex geological conditions, exacerbated in recent years by more frequent extreme rainfall due to climate change, resulting in an increasing number of slope collapse events. Each event highlights the importance of managing Man-made slopes on mountainous terrain and disaster prevention. Therefore, from 2010 to 2014, Taipei City government conducted phased surveys and documentation of Man-made slopes within the city's mountainous areas, totaling over 34,000 entries. These entries were categorized into five risk levels, from high to low, with corresponding strategies and mechanisms developed based on different risk levels and current conditions.

    This study utilized data from over 30,000 records collected through Taipei City's census. Initially, descriptive statistics were used to understand the basic characteristics of man-made slopes and the quantity patterns of risk indicators. Results indicated that slope protection type man-made slopes accounted for a significant proportion in total numbers and risk indicators. Subsequently, spatial analysis focused on high-risk slopes, starting with kernel density analysis revealing prominent clusters in Wenshan and Beitou districts. Further hot spot analysis identified notable hotspots around Datun Mountain in Beitou and Wenshan districts, confirming through spatial autocorrelation that high-risk man-made slopes exhibit strong spatial correlation, with prominent clusters also found in Beitou, Shilin, and Wenshan districts. Following this, logistic regression analysis was conducted using descriptive statistical findings and selected environmental and indicator variables from relevant literature, using risk assessment scores as dependent variables. The study found significant impacts of indicators of slope damage on high and low risk assessments.

    The man-made slope survey has been ongoing for nearly a decade, necessitating reassessment to determine if current slope conditions match those from previous assessments or if risks have increased. However, time and manpower remain critical challenges at this stage. Applying research outcomes to management practices, focusing initially on areas identified through hot spot analysis and slopes with specific indicators, annual sampling and inspection can evaluate changes in risk levels, allowing for continuous adjustments and potentially reducing manpower and expediting survey timelines.

    中文摘要 i Abstract ii 目 錄 iv 表目錄 v 圖目錄 vi 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究範圍及限制 4 第二章 文獻探討 5 第一節 人工邊坡建檔與管理 5 第二節 空間分析 11 第三節 邊坡災害 13 第三章 研究設計 16 第一節 研究區域背景 16 第二節 研究資料 17 第三節 研究方法 18 第四節 資料分析方法 25 第五節 研究流程 31 第四章 研究成果 32 第一節 人工邊坡調查建檔統計 32 第二節 空間分析 38 第三節 羅吉斯迴歸統計 46 第五章 結論與建議 52 第一節 結論 52 第二節 建議 54 參考文獻 56 附錄1人工邊坡調查建檔手冊(節錄) 58

    台北市土木技師公會(2010)。99 年度「臺北市山坡地邊坡調查及建檔研究計畫」委託研究案成果報告書。
    林伯勳、陳俊愷、邵國士、林忠志、王順民 (2014)。坡地災害風險管理探討。 中興工程,45-55。
    林裕益(2012)。臺北市人工邊坡特性分析及其風險管理機制之研究。博士論文。國立中興大學,臺中市。
    國家災害防救科技中心(2016)。臺灣氣候變遷災害衝擊風險評估報告,國家災害防救科技中心,新北市。
    張國偉(2011)。臺北市山坡地人工邊坡建檔與安全管理之研究。碩士論文。國立臺北科技大學,臺北市。
    連鈞毅(2017)。山坡地人工邊坡特性與風險分析之研究-以臺北市為例。碩士論文。國立臺北科技大學,臺北市。
    黃立遠 (2014)。臺北市人工邊坡分級管理制度介紹。技師期刊,42-49。
    溫在弘 (2022)。傳染病地理學的空間分析方法--回顧與進展。 地理學報,101期,109-124。
    溫在弘、劉擇昌、林民浩 (2010)。犯罪地圖繪製與熱區分析方法及其應用 : 以1998~2007年臺北市住宅竊盜犯罪為例。 地理研究,43-63。
    溫振宇(2005)。結合地震與颱風因子之山崩模式分析。碩士論文。國立成功大學,臺南市。
    臺北市政府工務局大地工程處(2010)。臺北市人工邊坡調查作業手冊。
    臺北市政府工務局大地工程處(2013)。102年度山坡地人工邊坡量化風險評估模式研究案成果報告書。
    臺北市政府工務局大地工程處(2013)。臺北市人工邊坡調查作業手冊。
    臺北市政府工務局大地工程處(2013)。山坡地人工邊坡分級管理-以臺北市為例。
    臺北市政府工務局大地工程處(2013)。山坡地人工邊坡管理實務。
    臺北市政府工務局大地工程處(2023)。112年度臺北市山坡地人工邊坡巡勘檢查及資料維護與檢核委託專業服務案成果報告書。
    鍾弘遠、陳高德 (2002)。臺北市邊坡管理經驗,91 年 11 月 8 日臺北市土木技師公會研討會演講論文稿。
    經濟部地質調查及礦業管理中心(2007)。臺灣北部的活動斷層。經濟部中央地質調查所特刊第十九號。
    Aneslin, L. (1995). Local indicators of spatial association - LISA. Geographical Analysis 27 (2): 93-115, doi:10.1111/j.1538-4632.1995.tb00338.x
    Getis, A., & J. K. Ord (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189-206.
    Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. John Wiley & Sons.
    Rahman, H. A., & Mapjabil, J. (2017). Landslides disaster in Malaysia: an overview. Health, 8(1), 58-71.
    Moore, D. S., & McCabe, G. P. (1989). Introduction to the practice of statistics. WH Freeman/Times Books/Henry Holt & Co.
    Silverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge.
    Tomlinson, R. F. (2012). Origins of the Canada geographic information system. ArcNews, Redlands: ESRI.
    Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33.
    Weeks, J. R. (2004). "The Role of Spatial Analysis in Demographic Research." . 1-31. In Spatially Integrated Social Science: Examples in Best Practice, edited by Goodchild M. F. and D. G. Janelle. New York: Oxford University Press.

    下載圖示
    QR CODE