研究生: |
陳峻逸 Chen, Chun-Yi |
---|---|
論文名稱: |
不同速度的等速離心運動對膝屈肌群損傷及重複訓練效應的影響 Effects of Isokinetic Eccentric Exercise at Different Velocities on Muscle Damage and Repeated Bout Effects of Knee Flexors |
指導教授: |
何仁育
Ho, Jen-Yu |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 離心訓練 、肌酸激酶 、肌肉酸痛指數 |
英文關鍵詞: | eccentric training, creatine kinase, muscle soreness |
論文種類: | 學術論文 |
相關次數: | 點閱:114 下載:31 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:在離心運動造成的肌肉損傷恢復後,能夠減緩下一次離心運動造成的肌肉損傷,此現象稱為重複訓練效應 (repeated bout effect)。過去探討不同離心運動速度影響重複訓練效應的研究,皆以相同反覆次數的離心收縮來進行觀察。然而,若以相同離心收縮時間的面向來探討,是否也有相似的重複訓練效應則需要研究進一步釐清。目的:(一) 探討在進行第一回合不同速度的等速離心運動對膝屈群肌群損傷的影響,以及 (二) 在第二回合皆進行快速度的等速離心運動後,檢驗不同離心運動速度產生重複訓練效應的程度。方法: 16名無阻力訓練經驗之男性配對分組至快速 (210°/s) 及慢速 (30°/s) 離心組。第一回合測驗時,參與者依組別進行6組 (快速:35下/組;慢速:5下/組) 相同離心收縮時間之最大等速離心運動;兩週後所有參與者皆進行快速度之最大等速離心運動 (第二回合測驗)。在每一回合測驗前及測驗後72小時內檢測血清肌酸激酶活性 (CK)、最大等長肌力 (MVIC)、關節活動度 (ROM) 及酸痛指數 (SOR),並以混合設計二因子變異數分析進行統計分析。結果:(一) 兩組的所有檢測指標,在第一回合離心運動後皆與基準值達顯著差異;其中,快速離心組ROM及MVIC在48小時及72小時顯著低於慢速離心組,但兩組間的CK與SOR在所有時間點皆無顯著差異。(二) 第二回合離心運動後與第一回合的快速離心組進行比較,兩組的CK活性與MVIC皆分別顯著低於及高於第一回合快速離心組,只有快速離心組的SOR顯著低於第一回合快速離心組;ROM的下降幅度方面,快速離心組在48、72小時以及慢速離心組在72小時顯著低於第一回合快速離心組。結論:快速離心運動引起的肌肉損傷較慢速離心運動大,然而在相同離心收縮時間下,快速離心運動與慢速離心運動產生的重複訓練效應是相似的。
Background: A phenomenon by which a bout of eccentric exercise reduces muscle damage in a subsequent bout of eccentric exercise is referred to repeated bout effects (RBE). Studies which investigated effects of eccentric contraction velocity on RBE have used the same number of contractions. No study has yet used the same time under tension when performing different velocity of eccentric contraction. Purpose: This study aimed to determine the effects of different eccentric exercise velocities on muscle damage and repeated bout effects of knee flexors. Methods: Sixteen untrained men were assigned to fast group (FV) or slow group (SV). In the first bout, the FV performed 6set (35rep/set) of eccentric exercise at 210°/s, and the SV performed 6set (5rep/set) of eccentric exercise at 30°/s. Two weeks later, all the participants performed 6set (35rep/set) of eccentric exercise at 210°/s. Serum creatine kinase (CK), maximal voluntary isometric contraction (MVIC), range of motion (ROM) and muscle soreness (SOR) were measured before and after exercises. A mixed model two-way ANOVA was used to analyze the data. Results: (1) After the first bout, all muscle damage indicators were significantly different from baseline in both groups. ROM and MVIC were significantly lower in FV than in SV at 48 and 72 hrs. (2) After the second bout, CK were significantly lower and MVIC were significantly higher than first bout of FV in both groups. Only SOR of FV were significantly lower than first bout of FV. ROM were significantly lower than first bout of FV at 48 and 72 hr in FV and at 72 hr in SV. Conclusion: Fast eccentric exercise induced greater muscle damage; however, RBE was similar between fast and slow eccentric exercise when performing eccentric exercise at the same time under tension.
林明儒、藍宇斌、吳昶潤、吳慧君、林正常 (2013)。不同最大等速離心運動對膝伸肌群引起肌肉損傷的影響。成大體育學刊,45(1),69-87。
陳忠慶 (2004)。運動引起肌肉損傷的原因之探討。運動生理暨體能學報,1,19-32。
陳忠慶 (2005)。離心運動對血液肌肉蛋白質評估指標的反應。運動生理暨體能學報,2,1-17。
謝伸裕 (2004)。身體活動研究法 (第三版)。臺北市:力大。
Barss, T., Magnus, C., Clarke, N., Lanovaz, J., Chilibeck, P., Kontulainen, S., Arnold, B., & Farthing, J. (2014). Velocity-specific strength recovery after a second bout of eccentric exercise. Journal of Strength and Conditioning Research, 28(2), 339-349.
Barroso, R., Roschel, H., Ugrinowitsch, C., Araujo, R., Nosaka, K., & Tricoli, V. (2010). Effect of eccentric contraction velocity on muscle damage in repeated bouts of elbow flexor exercise. Applied Physiology, Nutrition, Metabolism, 35, 534-540.
Black, C. D., & McCully, K. K. (2008). Muscle injury after repeated bouts of voluntary and electrically stimulated exercise. Medicine and Science in Sports and Exercise, 40(9), 1605-1615.
Bondesen, B. A., Mills, S. T., Kegley, K. M., & Pavlath, G. K. (2004). The COX-2 pathway is essential during early stages of skeletal muscle regeneration. American Journal of Physiology-Cell Physiology, 287, 475-483.
Bowers, E. J., Morgan, D. L., & Proske, U. (2004). Damage to the human quadriceps muscle from eccentric exercise and the training effect. Journal of Sports Sciences, 22, 1005-1014.
Brockett, C. L., Morgan, D. L., & Proske, U. (2001). Human hamstring muscles adapt to eccentric exercise by changing optimum length. Medicine and Science in Sports and Exercise, 33(5), 783-790.
Chapman, D., Newton, M., McGuigan, M., & Nosaka, K. (2008). Effect of lengthening contraction velocity on muscle damage of the elbow flexors. Medicine and Science in Sports and Exercise, 40(5), 926-933.
Chapman, D., Newton, M., Sacco, P., & Nosaka, K. (2006). Greater muscle damage induced by fast versus slow velocity eccentric exercise. International Journal of Sports Medicine, 27, 591-598.
Chapman, D., Newton, M., McGuigan, M., & Nosaka, K. (2011). Effect of slow-velocity lengthening contractions on muscle damage induced by fast-velocity lengthening contractions. Journal of Strength and Conditioning Research, 25, 211-219.
Chen, T. C. (2003). Effects of a second bout of maximal eccentric exercise on muscle damage and electromyographic activity. European Journal of Applied Physiology, 89(2), 115-121.
Chen, T. C., Chen, H. L., Lin, M. J., Wu, C. J., & Nosaka, K. (2010). Potent protective effect conferred by four bouts of low-intensity eccentric exercise. Medicine and Science in Sports and Exercise, 42(5), 1004-1012.
Chen, T. C., Chen, H. L., Pearce, A. J., & Nosaka, K. (2012). Attenuation of Eccentric Exercise-Induced Muscle Damage by Preconditioning Exercises. Medicine and Science in Sports and Exercise, 44(11), 2090-2098.
Chen, T. C., & Hsieh, S. S. (2000). The effects of repeated maximal isokinetic eccentric exercise on recovery from muscle damage. Research Quarterly for Exercise and Sport, 71, 260-266.
Chen, T. C., Nosaka, K., & Sacco, P., (2007). Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. Journal of Applied Physiology, 102, 992-999.
Crameri, R. M., Aagaard, P., Qvortrup, K., Langberg, H., Olesen, J., & Kjaer, M. (2007). Myofibre damage in human skeletal muscle: Effects of electrical stimulation versus voluntary contraction. Journal of Physiology, 583, 365-380.
Hortobagyi, T., Hill J. P., Houmard, J. A., Fraser, D. D., Lambert, N. J., & Israel, R. G. (1996). Adaptive responses to muscle lengthening and shortening in humans. Journal of Applied Physiology, 80, 765-772.
Koh, T. J., & Brooks, S. V. (2001). Lengthening contractions are not required to induce protection from contraction-induced muscle injury. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, 281(1), 155-161.
Lavender, A. P., & Nosaka, K. (2008). A light load eccentric exercise confers protection against a subsequent bout of more demanding eccentric exercise. Journal of Science and Medicine in Sport, 11, 291-298.
Matsuo, S., Suzuki, S., Iwata, M., Hatano, G., & Nosaka, K. (2015). Changes in force and stiffness after static stretching of eccentrically-damaged hamstrings. European Journal of Applied Physiology, 115(5), 981-991.
McCafferty, W. B., & Horvath, S. M. (1977). Specificity of exercise and specificity of training: A subcellular review. Research Quarterly for Exercise and Sport, 48, 358-371.
McHugh, M. P., Connolly, D. A., Eston, R. G., & Gleim, G. W. (1999). Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Medicine, 27, 157-170.
Moritani, T., Muramatsu, S., & Muro, M. (1988). Activity of motor units during concentric and eccentric contractions. American Journal of Physical Medicine, 66(6), 338-350.
Nosaka, K., & Aoki, M. S. (2011). Repeated bout effect: research update and future perspective. Brazilian Journal of Biomotricity, 5(1), 5-15.
Nosaka, K., & Newton, M. (2002). Is recovery from muscle damage retarded by a subsequent bout of eccentric exercise inducing larger decreases in force? Journal of Science and Medicine in Sport, 5, 204-208.
Nosaka, K., Newton, M., & Sacco, P. (2002a). Muscle damage and soreness after endurance exercise of the elbow flexors. Medicine and Science in Sports and Exercise, 34(6), 920-927.
Nosaka, K., Newton, M., & Sacco, P. (2002b). Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scandinavian Journal of Medicine and Science in Sports, 12, 337-346.
Paddon-Jones, D., Keech, A., Lonergan, A., & Abernethy, P. (2005). Differential expression of muscle damage in humans following acute fast and slow velocity eccentric exercise. Journal of Science and Medicine in Sport, 8(3), 255-263.
Schoenfeld, B. J. (2012). Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? Journal of Strength and Conditioning Research, 26(5), 1441-1453.
Shepstone, T. N., Tang, J. E., Dallaire, S., Schuenke, M. D., Staron, R. S., & Phillips, S. M. (2005). Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. Journal of Applied Physiology, 98(5), 1768-1776.
Vikne, H., Refsnes, P. E., Ekmark, M., Medbk, J. I., Gundersen, V., & Gundersen, K. (2006). Muscular performance after concentric and eccentric exercise in trained men. Medicine and Science in Sports and Exercise, 38(10), 1770-1781.
Warren, G. L., Lowe, D. A., & Armstrong, R. B. (1999). Measurement tools used in the study of eccentric contraction-induced injury. Sports Medicine, 27(1), 43-59.
Yu, J. G., Carlsson, L., & Thornell, L. E. (2004). Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: An ultrastructural and immunoelectron microscopic study. Histochemistry and Cell Biology, 121, 219-227.