簡易檢索 / 詳目顯示

研究生: 簡宏達
Hong-Da Jian
論文名稱: 可變角度之橢圓偏光量測系統的理論分析與驗證
Theory Analysis and Verification of Variable-Angle Spectroscopic Ellipsometry Systems
指導教授: 張國維
Chang, Gao-Wei
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 86
中文關鍵詞: 橢圓偏光儀、可變角度、估算程序
英文關鍵詞: ellipsometer, variable-angle, evaluation process.
論文種類: 學術論文
相關次數: 點閱:340下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鍍膜技術長久以來在光學、光電、半導體等產業扮演相當重要的角色。例如,在傳統光學產業中,透鏡必須進行鏡面的抗反射鍍膜,在光纖通訊產業中,其重要關鍵元件多波長分波多工器(DWDM)必須經由數十層甚至上百層的鍍膜處理才能完成。除了製程需即時監控外,為確保鍍膜品質,也必須對膜層厚度與相關參數進行量測。為達成此一功能,橢圓偏光量測技術長久以來已經是大家廣泛認同的一項非常重要之技術。本論文的目的主要有二:
    1. 首先,我們對基礎與進階的橢偏儀組態去作理論的研究以及我們也討論不同橢偏儀的演進,舉例來說:消光式橢偏儀、光譜分光式橢偏儀、以及可變角度之光譜分光式橢偏儀。
    2. 再者,我們將驗證在這些系統中橢偏方法的效能。
    這篇論文裡我們對不同橢偏儀的組態作簡單的理論敘述,以及模擬消光式、光譜分光式以及可變角度之光譜分光式的橢偏系統。經由實驗我們也驗證了理論的研究,舉例來說:我們判定使用在橢偏系統中的極化器是否理想。在我們光譜反射式系統中,從干涉震盪數目的觀察裡我們建立對薄膜厚度量測的估算程序。最後,在可變角度之橢偏系統架構的實驗裡我們給予了簡單的分析。

    Coating technology has played an important role in optics, opto-electronics, semiconductor industries, etc. For example, a lens is usually treated with anti-reflection coating in traditional optical industry. In the industry of fiber-optics communication, the key component DWDM (dense wavelength division multiplexer) is coated with thin films of many layers even to hundreds of layers. As a result, in addition to real-time monitoring for product manufacturing, the measurement of coating performance of the key components is very important. To do this, ellipsometry has been widely recognized as an essential technology for many years. In this thesis, we focus on two major objectives as follows:
    1. The first is to conduct a theoretical study on basic ellipsometry configurations and advanced ones, and to discuss the evolution of different ellipsometers, (for example, null ellipsometer, spectroscopic ellipsometer (SE), and variable-angle spectroscopic ellipsometer (VASE).)
    2. The second is to verify the effectiveness of ellipsometric methods in these systems.
    This thesis briefly describes principles for different configurations of ellipsometers, and the null ellipsometry, spectroscopic ellipsometry, and variable-angle spectroscopic ellipsometry systems are simulated. We verify theoretical study by experiments. For instance, we check if a linear polarizer employed in the ellipsometer systems is ideal. Also, in our reflectometry system, we establish the of a thin film, for thickness measurement from observations of the number of interference oscillations. Finally, we give a simple analysis to the experiment of our VASE setup.

    封面 誌謝 中文摘要 Abstract Table of Contents List of Figures List of Tables Chapter 1 Introduction 1.1 Motivation 1.2 Objectives 1.3 Past Approaches 1.4 Thesis Organization Chapter 2 Theoretical Study on Basic Ellipsometry 2.1 Fundamental Equation of Eellipsometry 2.1.1 Single Reflection Mode 2.1.2 Multiple Reflection Mode 2.2 Ellipsometer Configurations 2.3 Null Ellipsometer 2.4 Spectroscopic Ellipsometer 2.4.1 Advantages of a SE with Wide Wavelength Range 2.4.2 Cauchy Modeling for Transparent Media Chapter 3 Analysis of VASE Configurations 3.1 Advantages of Multiple Angles 3.2 Optical Data Analysis Chapter 4 Simulation Results 4.1 Simulation of the Ellipsometers with Single-Wavelength Light Sources 4.1.1 Delta and Psi and the Optical Constants for Substrates 4.1.2 Delta and Psi Trajectories for Transparent Films 4.1.3 Trajectories for Absorbing Films 4.2 Simulation of the Ellipsometers with Multi-Wavelength Light Sources 4.3 Simulation of the Ellipsometers with Multiple Wavelength Light Sources and Variable measurement Angles Chapter 5 Our Experiments 5.1 Experiment 1: Check If a LP Component is Ideal 5.2 Experiment 2: Reflectometers 5.2.1 Optimization Technique 5.2.2 Optimization Technique for the Sample 1: SiO2, d=1000 nm 5.2.3 Optimization Technique for the Sample 2: SiO2, d=4300 nm 5.2.4 Discussion 5.3 Experiment 3: VASEs 5.3.1 Case 1: VASE for a Rotatable-Sample 5.3.2 Case 2: VASE for a Shifted-Sample 5.3.3 The Analysis of an Optimization for the VASEs Chapter 6 Conclusions and Future Work 6.1 Conclusions 6.2 Future Work Appendix A Fundamental Analysis of Related Theories Appendix B Brief Reviews of Ellipsometry Appendix C Theoretical Analysis of Reflectometry References

    [1] J. A. Woollam, Ellipsometry catalog, 2003.
    [2] S. Zollner, T. C. Lee, and A. Konkar ,“Thin-Film metrology of silicon-on-insulator materials, Appl. Phy. Vol. 76, no. 1-3, 2000.
    [3] X. Gao and D. W. Gleen , “Spectroscopic ellipsometry and magneto-optic Kerr effects in Co/Pt multilaters ,“ Appl. Phy. vol. 82, no.9, 1997.
    [4] J. A. Dobrowolski, Li Li, and James N. Hilfiker , “Long-wavelength cutoff filters of a new type,” Appl. Opt. vol. 38, no. 22, 1999.
    [5] C. W. Chu, C. C. Lee, I Y. Fu, et. al. Japanese J. Appl. Phys., vol.33, pp. 197, 1994.
    [6] Z. Huang and J. Chu, “Optimizing precision of fixed-polarizer,rotating-polarizer, sample, and fixed-analyzer spectroscopic ellipsometry, “ Applied Optics-OT, vol. 39, issue 34, pp. 6390, 2000.
    [7] J. Lee, P. I. Rovira, et. al., “Alignment and calibration of the MgF2 biplate compensator for applications in rotating-compensator multichannelellipsometry, “ JOSA A, vol. 18, issue 8, pp. 1980, 2001.
    [8] H. Zhu, L. Liu, et. al., “High-precision system for automatic null ellipsometric measurement,“ Applied Optics-OT, vol. 41, issue 22, pp.4536, 2002.
    [9] H. G. Tompkins and W. A. McGahan, Spectroscopic ellipsometry and reflectometry A user’s Guide, John Wiley & Son, Inc., 1999.
    [10] H. G. Tompkins, A user’s guide to ellipsometry, Academic Press. Inc.,1993.
    [11] E. Collett, Polarized light in fiber optics, The PolaWave Group, 2003.
    [12] R. M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light, Amsterdam, 1997.
    [13] J. N. Hilfiker, C. Bungay, et. al., “Spectroscopic ellipsometry in the vacuum ultraviolet: 157 nm and below,” Future Fab International, Vol. 8, pp. 243-247, 2000.
    [14] S. N. Jasperson and Schnatterly, An improved method for high reflectivity ellipsometry based on a new polarization modulation technique, Rev. Sci. Instrum., 1969.
    [15] M. Schubert, B. Rheinlander, et. al., “Extension of rotating-analyzer ellipsometry to generalized ellipsometry: determination of the dielectric function tensor from uniaxial TiO2,” J. Opt. Soc. Am. A, pp. 875-883, 1996.
    [16] J. N. Hilfiker, F. G. Celii, et. al., “Spectroscopic ellipsometry (SE) for materials characterization at 193 and 157 nm, ” Semiconductor Fabtech, pp. 87-91, 2002.
    [17] Collins. R.W, An. Ilsin, et. al., “Advances in multichannel spectroscopic ellipsometry,“ Thin solid films, vol. 313-314, pp.18-32, 1998.
    [18] 李兆祜,精準相位延遲拋物面橢偏儀,國立臺灣大學/應用力學研究所博士論文,1998。
    [19] 李孝文,積分球橢偏儀,國立台灣大學/應用力學研究所博士論文,1997。
    [20] 王禎祥,橢偏術多層膜分析之準度研討-入射角準度之修正方法,國立台灣大學/應用力學研究所碩士論文,1997。
    [21] 黃毓中,利用調制式橢圓偏光術於研究光學參數、薄膜厚度與光學性質,逢甲大學/電子工程所碩士論文,2001。
    [22] 吳曉竹,利用橢圓偏光儀決定單層薄膜之光學常數和厚度之研究,國立清華大學材料科學與工程所碩士論文,1993。
    [23] 徐舜威,利用光彈調制橢圓偏光儀量測楔角,國立交通大學光電工程所碩士論文,1999。
    [24] 蔡坤洲,角變橢偏光譜儀之設計與研發,國立台灣大學光電工程所碩士論文,2001。

    QR CODE