研究生: |
陳炳睿 Chen, Ping-Jui |
---|---|
論文名稱: |
使用混合式多屬性決策法定義智慧遠距醫療之使用情境與平台 Using Hybrid Multiple Attribute Decision Making Methods for Defining Scenarios and Platforms of Smart Telemedicine Products |
指導教授: |
黃啟祐
Huang, Chi-Yo |
口試委員: |
黃啟祐
Huang, Chi-Yo 曾國雄 Tzeng, Gwo-Hshiung 羅乃維 Lo, Nai-Wei |
口試日期: | 2021/08/08 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系科技應用管理碩士在職專班 Department of Industrial Education_Continuing Education Master's Program of Technological Management |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 智慧遠距醫療技術 、混合多屬性決策分析 、情境分析 、以平台為基礎之設計 |
英文關鍵詞: | Smart Telemedicine, Multiple criteria decisions making, Scenario analysis, Platform-Based Design |
研究方法: | 混合多屬性決策分析 、 情境分析 、 以平台為基礎之設計 |
DOI URL: | http://doi.org/10.6345/NTNU202401613 |
論文種類: | 學術論文 |
相關次數: | 點閱:168 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
智慧遠距醫療 (Smart Telemedicine) 為資訊與通訊科技在醫療及健康領域的新應用,其範疇包括醫療照護、疾病管理、公共衛生監測、教育及研究等等。伴隨著5G的商業化與物聯網的廣泛應用,智慧遠距醫療可以打破地理與傳輸延緩所造成的限制,讓人們得到更好的照護。智慧遠距醫療雖然重要,但相關文獻大都聚焦於系統或技術面的應用與介紹,目前少有研究探討智慧醫療設備於不同情境之下的架構。
為跨越研究缺口,本研究擬藉由情境分析,預測未來並定義適用於各情境下之智慧醫療設備架構。因此本論文將應用多屬性決策方法,定義智慧醫療產業之情境可能,導入宏觀環境分析 (Political, Economic, Social, Technological, Environment, and Legal, PESTEL) 模型為框架,首先,使用情境分析法 (Scenario Analysis) 定義出不同情境驅動變項,建立不同的情境加以分析,導入混合型多準則模型,訂定最合適情境。其次,導入混合型多準則模型,定義不同情境之智慧醫療平台元素。二階段研究都使用專家問卷,以修正式德菲法選出適用準則,再使用決策評估實驗室法 (Decision Making Trial and Evaluation Laboratory, DEMATEL) 計算構面及各準則間的影響關係與重要性,並結合基於決策評估實驗室之分法析網絡流程 (DEMATEL based Analytic Network Process,DANP) 評估準則權重。最後使用多準則折衷妥協解 (VlseKriterijumska Optimizacija I Kompromisno Resenje,VIKOR),從折衷排名中獲得智慧遠距醫療平台未來之三種發展情境,也計算出最適合該情境的智慧遠距醫療產品架構。
本研究以某跨國智慧遠距醫療科技公司之可攜式十二導程心電圖平台為基礎,實證分析本研究架構之有效性。依據實證研究結果顯示,技術好、環境佳、法律支持;技術好、環境佳、法律不支持;技術與環境不佳,但法律支持,為未來五年發展智慧遠距醫療平台之三種最可能之情境,第一、三種情境下,未來最可能加入可攜式十二導程心電圖系統之模組為AI、雲端運算、與6G模組,而AI、6G與數位學習為第二種情境之下,最適合導入之子系統。本研究結果可作為其他智慧遠距醫療公司設計產品之基礎,以平台為基礎之分析架構,可作為設計未來產品之用。
"Smart Telemedicine" is a new application of information and communication technology in health care, including healthcare, disease management, public health monitoring, education, and research. With the commercialization of 5G and the widespread use of the Internet of Things (IoT), Smart Telemedicine devices can overcome geographical and transmission delays and provide people with better care. While intelligent medicine is important, the majority of the relevant literature focuses on the application and introduction of systems or technologies, and there is currently little research into the architecture of Smart Telemedicine devices in different contexts.
To overcome the research gap, this study proposes to predict the future and define Smart Telemedicine device architectures that are applicable to each possible scenario based on platform-based design. Using the political, economic, social, technological, environmental, and legal (PESTEL) model as a framework, this paper will use multi-attribute decision-making methods to define the situational potential of the intelligent medical industry. First, it will use scenario analysis to define different situation-driven variables and create different situations to analyze. Finally, it will use a hybrid multi-rule model to find the best situation. Next, we present a hybrid multi-standard model that outlines the elements of the intelligent medical platform in various scenarios. In the second phase of the study, we use expert questionnaires to refine the default methodology for selecting applicable criteria. Next, we use the Decision Making Trial and Evaluation Laboratory (DEMATEL) to calculate the configuration, impact relationship, and importance between the criteria. Finally, we combine the DEMATEL-based Analytic Network Process (DANP) to evaluate the weighting of the criteria. Finally, using the VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), we obtained three scenarios for the future development of Smart Telemedicine platforms from the compromise ranking, and we also calculated the Smart Telemedicine product architecture that best suits the situation.
This study utilizes the portable twelve-lead electrocardiogram platform of a multinational smart telemedicine technology business to evaluate the feasibility of the proposed framework. Empirical research findings indicate that the three most probable scenarios for the development of smart telemedicine platforms in the next five years are: good technology, favorable environment, and legal support; strong technology, favorable environment, but lacking legal support; and poor technology and environment, but legal support. In the first and third scenarios, the portable 12-lead electrocardiogram system is expected to incorporate artificial intelligence (AI), cloud computing, and 6G modules. In the second scenario, the system is expected to include AI, 6G, and digital learning modules. The findings of this study can serve as a foundation for product developments by other smart telemedicine firms, while the platform-based analytic framework can be utilized for designing future products.
Agrawal, R., & Bansal, S. (2023). Energy Resource Management (ERM) using VIKOR Methods. 2023 1st International Conference on Cognitive Computing and Engineering Education. Pune, India: IEEE
Alexander, J. (2023). Creative commoning: design experiments exploring ways for platform technology to democratise architectural practice and production. The Journal of Architecture, 28(1), 101-129.
Allaert, F.-A., Legrand, L., Abdoul Carime, N., & Quantin, C. (2020). Will applications on smartphones allow a generalization of telemedicine? BMC Medical Informatics and Decision Making, 20, 1-6.
Alspaugh, T. A., & Anton, A. I. (2008). Scenario support for effective requirements. Information and Software Technology, 50(3), 198-220.
Alvarez-Lorenzo, C., & Concheiro, A. (2019). Smart drug release from medical devices. Journal of Pharmacology and Experimental Therapeutics, 370(3), 544-554.
Aversa, D. (2024). Scenario analysis and climate change: a literature review via text analytics. British Food Journal, 126(1), 271-289.
Badr, A., Badawi, A., Rashwan, A., & Elgazzar, K. (2022). 12-lead ecg platform for real-time monitoring and early anomaly detection. 2022 International Wireless Communications and Mobile Computing. Dubrovnik, Croatia: IEEE.
Balasundaram, A., Routray, S., Prabu, A., Krishnan, P., Malla, P. P., & Maiti, M. (2023). Internet of Things (IoT)-based smart healthcare system for efficient diagnostics of health parameters of patients in emergency care. IEEE Internet of Things Journal, 10(21), 18563-18570.
Barclay, J. L., MacFarlane, P., Potts, S., & Leslie, S. J. (2008). Evaluation of a new device for the transmission of electrocardiograms by email. Journal of Telemedicine and Telecare, 14(4), 219-220.
Benton, T. G. (2019). Using scenario analyses to address the future of food. EFSA Journal, 17, e170703.
Bhuiyan, M. A., Zhang, Q., Xuan, W., Rahman, M. K., & Khare, V. (2023). Does good governance promote sustainable tourism? A systematic review of PESTEL analysis. SN Business & Economics, 3(1), 33.
Bou Hatoum, M., Nassereddine, H., Musick, S., & El-Jazzar, M. (2023). Investigation of PESTEL factors driving change in capital project organizations. Frontiers in Built Environment, 9, 1207564.
Byun, J., Oh, E., Lee, B., Kim, S., Lee, S., & Hong, Y. (2017). A single droplet‐printed double‐side universal soft electronic platform for highly integrated stretchable hybrid electronics. Advanced Functional Materials, 27(36), 1701912.
Caputo, A. C., Federici, A., Pelagagge, P. M., & Salini, P. (2023). Scenario analysis of offshore wind-power systems under uncertainty. Sustainability, 15(24), 16912.
Carloni, L. P., Bernardinis, F. D., Pinello, C., Sangiovanni-Vincentelli, A. L., & Sgroi, M. (2005). Platform-based design for embedded systems. In R. Zurawski (Ed.), Embedded Systems Handbook. Boca Raton, F.L.: CRC Press.
Chidi, R., & Akubue, I. (2024). Telemedicine in diabetic eye care: A meta-analysis of its effectiveness in underserved populations. World Journal of Biology Pharmacy and Health Sciences, 17(3), 131-139.
Choudhari, V., Dandge, V., Choudhary, N., & Sutar, R. G. (2018). A portable and low-cost 12-lead ECG device for sustainable remote healthcare. 2018 International Conference on Communication information and Computing Technology. Mumbai, India: IEEE.
Collignon, O. (2022). An Economic Perspective on Platform Trials—The Gift and the Curse. JAMA Network Open, 5(7), e2221149-e2221149.
Couture, J. L., Froehlich, H. E., Buck, B. H., Jeffery, K. R., Krause, G., Morris Jr, J. A., . . . Halpern, B. S. (2021). Scenario analysis can guide aquaculture planning to meet sustainable future production goals. ICES Journal of Marine Science, 78(3), 821-831.
Damdam, A., Qaisar, N., & Hussain, M. M. (2019). Honeycomb-serpentine silicon platform for reconfigurable electronics. Applied Physics Letters, 115(11), 1-6.
de Sousa, G. C., & Castañeda-Ayarza, J. A. (2022). PESTEL analysis and the macro-environmental factors that influence the development of the electric and hybrid vehicles industry in Brazil. Case Studies on Transport Policy, 10(1), 686-699.
Dima, A., Radu, E., & Dobrin, C. (2024). Exploring key barriers of HACCP certification adoption in the meat industry: a decision-making trial and evaluation laboratory approach. Foods, 13(9), 1303.
Dong, Q., Downen, R. S., Li, B., Tran, N., & Li, Z. (2021). A cloud-connected multi-lead electrocardiogram (ECG) sensor ring. IEEE Sensors Journal, 21(14), 16340-16349.
Doolittle, G. C., & Spaulding, R. J. (2006). Defining the needs of a telemedicine service. Journal of Telemedicine and Telecare, 12(6), 276-284.
EA, K., Zhizhin, M., Siquig, R., & Redmon, R. (2004). The Environmental Scenario Generator (ESG): a distributed environmental data archive analysis tool. Data Science Journal, 3, 10-28.
Finlay, P. N. (1998). Steps towards scenario planning. Engineering Management Journal, 8(5), 243-246.
Fontela, E., & Gabus, A. (1976). The DEMATEL observer. In: Dematel.
Górka-Stańczyk, M., & Leśniak, A. (2024). The Decision-Making Trial and Evaluation Laboratory Approach to the Assessment and Hierarchy of Factors Shaping the Costs of Facade Systems. Buildings, 14(6), 1780.
Guaita García, N., Martínez Fernández, J., & Fitz, C. (2020). Environmental scenario analysis on natural and social-ecological systems: A review of methods, approaches and applications. Sustainability, 12(18), 7542.
Gulzari, A., & Tarakci, H. (2021). A healthcare location-allocation model with an application of telemedicine for an earthquake response phase. International Journal of Disaster Risk Reduction, 55, 102100.
Guthrie, J. D., & Snyder, J. A. (2023). Improving access to care for underserved communities through telemedicine. Journal of the American Academy of PAs, 36(9), 41-44.
Haupt, L. (2023). Telemedicine and Healing Relationships. The Hasting Center Report, 53(4), 1.
Ho, A., & Quick, O. (2018). Leaving patients to their own devices? Smart technology, safety and therapeutic relationships. BMC Medical Ethics, 19, 1-6.
Hsieh, J.-c., & Hsu, M.-W. (2012). A cloud computing based 12-lead ECG telemedicine service. BMC Medical Informatics and Decision Making, 12, 1-12.
Hsieh, J.-c., Yu, K.-c., & Yang, C.-C. (2009). The realization of ubiquitous 12-lead ECG diagnosis in emergency telemedicine. Telemedicine and e-Health, 15(9), 898-906.
Huang, C.-Y., Chung, P.-H., Shyu, J. Z., Ho, Y.-H., Wu, C.-H., Lee, M.-C., & Wu, M.-J. (2018). Evaluation and selection of materials for particulate matter MEMS sensors by using hybrid MCDM methods. Sustainability, 10(10), 3451.
Huis in't Veld, R. M., Widya, I. A., Bults, R. G., Sandsjö, L., Hermens, H. J., & Vollenbroek-Hutten, M. M. (2010). A scenario guideline for designing new teletreatments: a multidisciplinary approach. Journal of Telemedicine and Telecare, 16(6), 302-307.
Jaleel, A., Mahmood, T., Hassan, M. A., Bano, G., & Khurshid, S. K. (2020). Towards medical data interoperability through collaboration of healthcare devices. IEEE Access, 8, 132302-132319.
Jha, S. (2023). Potential of Andrology in Providing Male Health Services from Womb to Tomb: PESTEL Analysis. Journal of Postgraduate Medicine, Education and Research, 57(3), 144-146.
Jin, Y., Chen, H., Ge, H., Li, S., Zhang, J., & Ma, Q. (2023). Urban–suburb disparities in pre-hospital emergency medical resources and response time among patients with out-of-hospital cardiac arrest: A mixed-method cross-sectional study. Frontiers in Public Health, 11, 1121779.
Joyce, K. (2019). Smart textiles: transforming the practice of medicalisation and health care. Sociology of Health & Illness, 41, 147-161.
Kautsch, M., Lichoń, M., & Matuszak, N. (2016). eHealth Development in Selected EU Countries: Barriers and Opportunities. International Journal of Integrated Care (IJIC), 16(6).
Khosravi, F., & Jha-Thakur, U. (2019). Managing uncertainties through scenario analysis in strategic environmental assessment. Journal of Environmental Planning and Management, 62(6), 979-1000.
Krasteva, V., Jekova, I., & Schmid, R. (2019). Simulating arbitrary electrode reversals in standard 12-lead ECG. Sensors, 19(13), 2920.
Kung, W. (2023). Using the PESTEL Analysis to Determine the Effectiveness of New Digital Media Strategies. Advances in Economics, Management and Political Sciences, 5(1), 19-25.
Kuo, T. C. (2010). The construction of a collaborative-design platform to support waste electrical and electronic equipment recycling. Robotics and Computer-Integrated Manufacturing, 26(1), 100-108.
Kuo, Y.-C., Huang, Y.-H., Sun, L., Small, G., & Lin, S.-J. (2023). Identifying key factors of sustainability practice in financial institutions based on decision-making trial and evaluation laboratory method. Asian Review of Accounting, 31(5), 661-679.
Lang, I. (2022). PESTEL Analysis of the Business Environment of Georgia and the United Stats of America. Economics & Business, 3, 116-135.
Li, S.-H., Wang, C.-Y., Lu, W.-H., Lin, Y.-Y., & Yen, D. C. (2012). Design and implementation of a telecare information platform. Journal of Medical Systems, 36, 1629-1650.
Li, Y. (2023). Construction of a platform for displaying dialectalized graphic design based on virtual reality technology. Applied Mathematics and Nonlinear Sciences, 9(1), 1-16.
Mahmoud, B. I. The Impact of the PESTEL Framework in the Green Supply Chain: An Analytical Research in the State Company for Textile and Leather Industries. International Journal of Transformations in Business Management, 13(1), 100-109.
Mahmoud, N. M., Fouad, H., & Soliman, A. M. (2021). Smart healthcare solutions using the internet of medical things for hand gesture recognition system. Complex & Intelligent Systems, 7, 1253-1264.
Makki, A. A., & Al-Filali, I. Y. (2024). Modeling the strategic enablers of financial sustainability in Saudi higher education institutions using an integrated decision-making trial and Evaluation Laboratory–Interpretive Structural Modeling Approach. Sustainability, 16(2), 685.
Massoomi, M. R., & Handberg, E. M. (2019). Increasing and evolving role of smart devices in modern medicine. European Cardiology Review, 14(3), 181.
McLeod, M. E., Oladeru, O. T., Hao, J., Malhotra, S. H., Chang, B. T., & Li, B. C. (2021). Leveraging telehealth and medical student volunteers to bridge gaps in education access for providers in limited-resource settings. Academic Medicine, 96(3), 390-394.
Mohammadzadeh, N., Rezayi, S., & Saeedi, S. (2023). Telemedicine for patient management in remote areas and underserved populations. Disaster Medicine and Public Health Preparedness, 17, e167.
Morello, R. (2014). Use of TEDS to improve performances of smart biomedical sensors and instrumentation. IEEE Sensors Journal, 15(5), 2497-2504.
Murry Jr, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423-436.
Nakajima, I., Sawada, Y., Ashihara, T., & Takashima, Y. (1999). Problems and our solutions for implementing telemedicine systems. Journal of Medical Systems, 23, 425-435.
Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455.
Parkes, P., Pillay, T. D., Bdaiwi, Y., Simpson, R., Almoshmosh, N., Murad, L., & Abbara, A. (2022). Telemedicine interventions in six conflict-affected countries in the WHO Eastern Mediterranean region: a systematic review. Conflict and Health, 16(1), 64.
Patou, F., AlZahra’a Alatraktchi, F., Kjægaard, C., Dimaki, M., Madsen, J., & Svendsen, W. E. (2016). Evolvable smartphone-based platforms for point-of-care in-vitro diagnostics applications. Diagnostics, 6(3), 33.
Patterson, V. (2019). Managing epilepsy by telemedicine in resource-poor settings. Front Public Heal, 7, 321.
Perera, R. (2017). The PESTLE analysis. Avissawella, Sri Lanka: Nerdynaut.
Petit, A., & Cambon, L. (2016). Exploratory study of the implications of research on the use of smart connected devices for prevention: a scoping review. BMC Public Health, 16, 1-13.
Pineda-López, F., Martínez-Fernández, A., Rojo-Álvarez, J. L., García-Alberola, A., & Blanco-Velasco, M. (2018). A flexible 12-Lead/Holter device with compression capabilities for low-bandwidth mobile-ECG telemedicine applications. Sensors, 18(11), 3773.
Proag, V. (2021). Analysis of Environmental Impacts of Infrastructure. In V. Proag (Ed.), Infrastructure Planning and Management: An Integrated Approach (pp. 219-251). Cham: Springer International Publishing.
Quiroz-Juarez, M. A., Jimenez-Ramirez, O., Vazquez-Medina, R., Ryzhii, E., Ryzhii, M., & Aragon, J. L. (2018). Cardiac conduction model for generating 12 lead ECG signals with realistic heart rate dynamics. IEEE Transactions on Nanobioscience, 17(4), 525-532.
Rastogi, N., & Trivedi, M. (2016). PESTLE technique–a tool to identify external risks in construction projects. International Research Journal of Engineering and Technology (IRJET), 3(1), 384-388.
Rigla, M. (2011). Smart telemedicine support for continuous glucose monitoring: the embryo of a future global agent for diabetes care. Journal of Diabetes Science and Technology, 5(1), 63-67.
Saeed, I. M., Eltaema, M. A., Eldie, G. A. S., Mohamed, H. T., Ahmed, H. O., & Hamad, M. E. S. (2023). Development of 3-Channel 12-Lead ECG Monitoring Device with Telemedicine Integration using AD8232. 2023 International Conference on Computer and Applications. Cairo, Egypt: IEEE.
Saranya, S., & Fatima, N. S. (2022). IoT-based patient health data using improved context-aware data fusion and enhanced recursive feature elimination model. IEEE Access, 10, 128318-128335.
Sarwal, A., Lim, J., & Sarwal, A. (2024). Telemedicine for the Underserved Racial and Ethnic Minorities During COVID-19 and Beyond. Telemedicine and e-Health, 3(6), 1588-1593.
Schwaab, B., Katalinic, A., Richardt, G., Kurowski, V., Krüger, D., Mortensen, K., Lorenz, E., & Sheikhzadeh, A. (2006). Validation of 12-lead tele-electrocardiogram transmission in the real-life scenario of acute coronary syndrome. Journal of telemedicine and telecare, 12(6), 315–318.
Schweizer, V. J., & Kriegler, E. (2012). Improving environmental change research with systematic techniques for qualitative scenarios. Environmental Research Letters, 7(4), 044011.
Shen, Y., Zhang, H., Fan, Y., Lee, A. P., & Xu, L. (2020). Smart health of ultrasound telemedicine based on deeply represented semantic segmentation. IEEE Internet of Things Journal, 8(23), 16770-16778.
Si, W., & Niu, L. (2024). Enhancing Human Reliability Prediction in Smart Tower Crane Interfaces: A Refined Approach Using Simplified Plant Analysis Risk–Human Reliability Assessment and the Decision Making Trial and Evaluation Laboratory–Analytic Network Process. Buildings, 14(4), 1083.
Siksnelyte-Butkiene, I., Zavadskas, E. K., & Streimikiene, D. (2020). Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: A review. Energies, 13(5), 1164.
Simpson, T. W., Marion, T., De Weck, O., Ho¨ ltta¨-Otto, K., Kokkolaras, M., & Shooter, S. B. (2006). Platform-based design and development: current trends and needs in industry. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 1, 801-810.
Sobel, R. S., & Clark, J. (2016). Interest group activity and government growth: a causality analysis. Cato Journal, 36, 507.
Sorooshian, S., Jamali, S. M., & Ale Ebrahim, N. (2023). Performance of the decision-making trial and evaluation laboratory. Aims Mathematics, 8(3), 7490-7514.
Stead, D. (1999). Identifying future scenarios and their implications for transport policy. International Journal of Sustainable Development & World Ecology, 6(4), 312-323.
Steijlen, A. S., Jansen, K. M., Albayrak, A., Verschure, D. O., & Van Wijk, D. F. (2018). A novel 12-lead electrocardiographic system for home use: development and usability testing. JMIR mHealth and uHealth, 6(7), e10126.
Sufi, F. K. (2024). Open-source cyber intelligence research through PESTEL framework: Present and future impact. Societal Impacts, 3, 100047.
Suzuki, T., Hotta, J., Kuwabara, T., Yamashina, H., Ishikawa, T., Tani, Y., & Ogasawara, K. (2020). Possibility of introducing telemedicine services in Asian and African countries. Health Policy and Technology, 9(1), 13-22.
Thajudeen, S., Elgh, F., & Lennartsson, M. (2022). Supporting the reuse of design assets in ETO-based components—A case study from an industrialised post and beam building system. Buildings, 12(1), 70.
Thakkar, J. J., & Thakkar, J. J. (2021a). Decision-making trial and evaluation laboratory (DEMATEL). Multi-criteria Decision Making (pp. 139-159). Gateway East, Singapore: Springer.
Thakkar, J. J., & Thakkar, J. J. (2021b). VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR).nMulti-Criteria Decision Making (pp. 129-138). Gateway East, Singapore: Springer.
Thakur, V. (2021). Framework for PESTEL dimensions of sustainable healthcare waste management: Learnings from COVID-19 outbreak. Journal of Cleaner Production, 287, 125562.
Tourki, Y., Keisler, J., & Linkov, I. (2013). Scenario analysis: a review of methods and applications for engineering and environmental systems. Environment Systems & Decisions, 33, 3-20.
Uzun, B., & Uzun Ozsahin, D. (2021). Vlse criterion optimization and compromise solution in serbian (VIKOR). Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering, 43-46.
Vallati, M., & Grassi, A. (2019). AI to Facilitate Legal Analysis in the PESTLE Context. Proceedings of the EMerging Technology conference, 66-68
Venable, J. M., Ma, Q. L., Ginter, P. M., & Duncan, W. J. (1993). The use of scenario analysis in local public health departments: alternative futures for strategic planning. Public Health Reports, 108(6), 701.
Ventuneac, A., Dickerson, S. S., Dharia, A., George, S. J., & Talal, A. H. (2023). Scaling and sustaining facilitated telemedicine to expand treatment access among underserved populations: a qualitative study. Telemedicine and e-Health, 29(12), 1862-1869.
Vrints, C. J. (2018). The 12 lead ECG rules the waves in acute cardiovascular care. European Heart Journal: Acute Cardiovascular Care, 7(3), 197-199.
Wei, X., Ren, Y., & Gao, L. (2024). Research on substation location selection based on VIKOR method. 2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms. Changchun, China: IEEE.
Wernhart, A., Gahbauer, S., & Haluza, D. (2019). eHealth and telemedicine: Practices and beliefs among healthcare professionals and medical students at a medical university. PloS one, 14(2), e0213067.
Xie, L., Zhang, Z., Wu, Q., Gao, Z., Mi, G., Wang, R., . . . Du, Y. (2023). Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. Nanoscale, 15(2), 405-433.
Xu, N., Bai, J., & Yan, R. (2022). Identifying the vulnerable regions of emergency medical services based on the three-stage of accessibility: a case study in Xi’an, China. International Journal for Equity in Health, 21(1), 54.
Yue, L., & Lv, Y. VIKOR optimization decision model based on poset. Journal of Intelligent & Fuzzy Systems(Preprint), 1-17.
Zhang, H., Li, J., Wen, B., Xun, Y., & Liu, J. (2018). Connecting intelligent things in smart hospitals using NB-IoT. IEEE Internet of Things Journal, 5(3), 1550-1560.
Zhong, Y., Xu, Z., & Cao, L. (2023). Intelligent IoT-based telemedicine systems implement for smart medical treatment. Personal and Ubiquitous Computing, 27(3), 1429-1439.
Zhu, B., Xu, Z., Zhang, R., & Hong, M. (2015). Generalized analytic network process. European Journal of Operational Research, 244(1), 277-288.