研究生: |
洪翎嘉 Hung, Ling-Chia |
---|---|
論文名稱: |
網際網路地圖上之量測精度探討 Accuracy Assessment on Making Measurements on Web Map Services |
指導教授: |
王聖鐸
Wang, Sen-Do |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 準確度評估 、距離量測 、網際網路地圖服務 、網際網路麥卡托投影 |
英文關鍵詞: | Accuracy Assessment, Distance Measurements, Web Map Services, Web Mercator Projection |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DG.021.2018.A05 |
論文種類: | 學術論文 |
相關次數: | 點閱:113 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Google於2005年推出谷歌地圖(Google Maps)後,成功將網際網路地圖服務(Web Map Services, WMS)推廣至一般使用者,成為目前一般使用者最直覺獲取空間資訊的方式。但美國國家地理空間情報署(National Geospatial-intelligence Agency, NGA)以及國際油氣生產者協會(International Association of Oil & Gas Producers, IOGP)卻相繼建議使用者勿在網際網路麥卡托投影(Web Mercator Projection)上進行重要量測工作。在網際網路地圖上量測,除了會受限於原本圖資的測製精度之外,也會受到地圖投影方式、螢幕點選精度、圖臺設計等影響,導致量測結果與實際有所出入。本研究以使用者觀點出發,採用實驗之方式,試圖釐清網際網路地圖量測準確度,以提供一般使用者參考。本研究以國內外常使用的網際網路地圖,如:Google Earth Pro、Google Map、ESRI ArcGIS Earth、ESRI ArcGIS Online、國土測繪中心臺灣通用電子地圖、國土測繪中心圖資服務雲以及國土測繪中心基本地形圖共7個網際網路地圖為實驗圖臺,分為兩個範圍進行實驗。第一部分的實驗區域以臺灣本島地區120°E、121°E、122°E三條經線及23°N、24°N、25°N三條緯線所交會出的 9個整數經緯度交點為坐標量測目標,以兩點之間的12條邊長作為距離量測標的,評估使用者在使用上述網際網路地圖服務時,所能得到之量測準確度,以及利用Google 以及ESRI所提供的API進行距離計算,了解摒除人為點選誤差後,網際網路麥卡托投影於臺灣地區的變形規律。第二部分的實驗區域以臺北市區為範圍,挑選東西方向的信義路與南北方向的松江路(新生南路),分別進行線段兩端點的量測,釐清使用者於較小範圍內,所能得到的量測準確度。最後以信義路與松江路(新生南路)上實際的GPX軌跡檔,利用API進行距離計算,評估採用API進行軌跡距離計算之準確度,並了解利用網際網路地圖所提供的API進行距離計算是否適切。
Since Google launched its first open-access web map application, Google Maps, in 2005, the web map service (WMS) has been widely used by people all over the world. The convenience and open accessibility of the WMS breaks down the high barrier of using professional paper map. These days, people are more accustomed to measuring coordinates and distance on the WMS rather than on the paper maps now. However, the U.S. National Geospatial-Intelligence Agency (NGA) and the International Association of Oil and Gas Producers (IOGP) have successively been publishing notices dissuading people from measuring distances on the WMS, based on results produced by the Web Mercator Projection. Since distortions are inevitable for any projection, every map would therefore contain some form of distortion. Nevertheless, measuring errors occurring on the WMS derives not only from the projective distortion, but also from both the human-machine interface and the web map platform. The objective of this research is to assess the overall accuracy of the measurement on the WMS. Seven web map services are chosen for experiments: Google Earth Pro, Google Map, ESRI ArcGIS Earth, ESRI ArcGIS Online, NLSC Taiwan Electronic Map, NLSC Basic Topographic Map, and NLSC Taiwan Map Service. The experiments consists of two parts, the first part covers the whole Taiwan while the second part puts focus on Taipei City. In the first part, we chose nine intersections where three parallels (23°N, 24°N, 25°N) and three meridians (120°E, 121°E, 122°E) meet as the measuring targets. The distances of the 12 edges formed by the nine intersections are measured for accuracy assessment. The coordinates of the nine intersection points derived from the Web Mercator Projection formula are assessed for the theoretical accuracy. Next, we invited several participants to click 10 times on each of the nine intersection points to evaluate the experimental accuracy of the coordinates. Finally, the measured distance of the 12 edges are compared to the geodesic length to conclude with an evaluation of the experimental accuracy on the distance measurements. In the second part of the experiment, we choose a south-north-bound road and a west-east-bound road in downtown Taipei City, Taiwan. The west-east-bound is Xinyi Road and the south-north-bound is Songjiang Road (Xin-sheng South Road). First, the Web Mercator Projection formula is used to assess the theoretical accuracy of the coordinates of the start and end points of each road. Secondly, distance between the coordinates of the two points is measured by the user and calculated from the Google Maps JavaScript API or ArcGIS API. Thirdly, the driving route distance is calculated from the GNSS track file - GPX. Finally, all measured or calculated distances are compared to the geodesic length to evaluate its experimental accuracy. The final results of this research can be served as a reference to people who prefer to make measurements on the WMS.
Aitchison, A. (2011). The Google Maps / Bing Maps Spherical Mercator Projection. Retrieved from https://alastaira.wordpress.com/2011/01/23/the-google-maps-bing-maps-spherical-mercator-projection/
Battersby, S. E., Finn, M. P., Usery, E. L., & Yamamoto, K. H. (2014). Implications of Web Mercator and its Use in Online Mapping. Cartographica, 49(2), 85-101. doi:10.3138/carto.49.2.2313
ESRI. (2018). ArcGIS REST API -Lengths. Retrieved from https://developers.arcgis.com/rest/services-reference/lengths.htm
Ghilani, C. D., & Wolf, P. R. (2011). Elementary Surveying: An Introduction to Geomatics (13 ed.): Pearson Education.
Google. (2018). Google Maps JavaScript API-Geometry Library. Retrieved from https://developers.google.com/maps/documentation/javascript/geometry
IOGP. (2016a). Coordinate Conversions & Transformations including Formula. Retrieved from http://www.iogp.org/pubs/373-07-2.pdf
IOGP. (2016b). Web Mercator. Retrieved from http://www.iogp.org/pubs/373-23.pdf
IOGP. (2017). EPSG Geodetic Parameter Dataset. Retrieved from https://www.epsg-registry.org/
Jenny, B. (2012). Adaptive Composite Map Projections. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2575-2582. doi:10.1109/TVCG.2012.192
NGA. (2014). Implementation Practice Web Mercator Map Projection Retrieved from http://earth-info.nga.mil/GandG/wgs84/web_mercator/(U)%20NGA_SIG_0011_1.0.0_WEBMERC.pdf
OGC. (2010). OpenGIS® Web Map Tile Service Implementation Standard. Retrieved from http://www.opengeospatial.org/standards/wmts
Porcu, E., Bevilacqua, M., & Genton, M. G. (2016). Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere. Journal of the American Statistical Association, 111(514), 888-898. doi:10.1080/01621459.2015.1072541
Snyder, J. P. (1987). Map projections: A working manual (1395). Retrieved from Washington, D.C.: https://pubs.er.usgs.gov/publication/pp1395
Tsai, H.-F. (2014). Design and Implementation of a Web Mapping System Supporting Multiple Map Projections.
Tyler, c. (2017). 臺灣的難抵極. Retrieved from https://tylercottenie.wordpress.com/2017/01/05/%E5%8F%B0%E7%81%A3%E7%9A%84%E9%9B%A3%E6%8A%B5%E6%A5%B5/comment-page-1/
USGS. (1993). Map projections. Retrieved from Reston, VA: http://pubs.er.usgs.gov/publication/70047422
Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, 23(176), 88-93.
Zinn, N. (2010). Web Mercator: Non-Conformal, Non-Mercator. Retrieved from http://www.hydrometronics.com/downloads.html
史天元. (2014). 平面與大地:測量學緒論教學裡的一項探討. [Plane Surveying or Geodetic Surveying: A Discussion on an Issue in Fundamental Surveying Teaching]. 地籍測量:中華民國地籍測量學會會刊, 33(2), 1-9.
林晉廷, 蕭釧瑛, 謝銘智, 黃舒郁, 辛希, & 林永青. (2013). 澳門的地圖投影及坐標轉換. 中興工程(121), 51-58.
林譽方. (2003). 地圖的測繪基準對套圖分析的影響. [Effects on Overlaying Analysis Using Different Geodetic Datum of Maps]. 地圖 : 中華民國地圖學會會刊(13), 45-56.
陳世儀, 張宇洲, 蔡季欣, & 蘇惠璋. (2014). 產製網際網路地圖圖磚多重模式之研究. Retrieved from https://www.nlsc.gov.tw/uploadfile/2735571.pdf
潘桂成. (2005). 地圖學原理. 臺灣: 三民出版社.