研究生: |
林庭伊 Lin, Ting-Yi |
---|---|
論文名稱: |
探討科學文本的機制可能性對辯證形式評估與閱讀歷程的影響 The influence of mechanistic plausibility on justification evaluation and reading process of scientific texts |
指導教授: |
顏妙璇
Yen, Miao-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 辯證 、機制原理可能性 、閱讀歷程 |
英文關鍵詞: | justification, mechanistic plausibility, reading process |
DOI URL: | http://doi.org/10.6345/NTNU202001004 |
論文種類: | 學術論文 |
相關次數: | 點閱:104 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於主張的辯證方式(justification)最常討論到的是實徵數據與機制原理,Kuhn(1993)認為應該要屏除原本的信念,獨立的看待實徵數據,但Koslowski與Masnick(2012)認為這兩者難以輕易分割,彼此會相互影響,且機制原理會協助對於數據的判斷。此研究針對大學生了解其閱讀科學文本後的辯證方式與閱讀歷程。科學文本會同時呈現機制原理與實徵數據,從中操縱機制原理可能性(即能否直接想出實徵數據變項間的因果機制),以了解大學生究竟會如何評估科學主張;並同時使用眼球追蹤系統記錄大學生閱讀的歷程。
研究結果顯示,機制原理可能性,對於閱讀前的主張可能性評級有顯著的影響,如同實驗操弄;閱讀後的主張可能性評級都有顯著提升,表示受試者獲得數據和機制的資訊之後都會更相信主張的可能性。在辯證方式上,大多數受試者在兩主張會採用相同的辯證方式(34%使用數據為主;38%使用機制為主);但在採用不同辯證方式的情況下,大部分的受試者(26%),在機制原理可能性高的主張以數據為主,機制原理可能性低的主張以機制為主,後者因提供機制資訊可讓受試者更了解數據變項間的因果關係,而前者不需要額外提供機制資訊即可了解故以數據為主,如同實驗預期。在閱讀時則發現不同的結果,在閱讀時整體會較注重機制的辯證,但以數據來說會在機制原理可能性低的文本花較多時間,未完全符合在機制原理可能性高的主張以數據為主,機制原理可能性低的主張以機制為主的實驗預期,可能的原因是文本內容對於受試者的易理解性導致,所以會在比較不易理解的部分花更多時間閱讀,顯示主張可能性評級、辯證方式、及閱讀歷程反應不同的認知歷程。
Empirical evidence and mechanism are most frequently discussed types of justification. Kuhn (1993) believed that empirical evidence should be treated independently from personal beliefs which should be dismissed. In contrast, Koslowski and Masnick (2012) thought that mechanism and evidence are interdependent, and that mechanism is informative in evidence evaluation. Therefore, this study focused on college students' justification evaluation and reading process of scientific texts with empirical evidence and mechanism presented at the same time. An eye tracking system was used to record the reading process of college students. The main manipulation of this study was mechanistic plausibility (high/low) of the causal relationship between two variables.
The results showed that mechanistic plausibility had a significant impact on plausibility rating before reading, as expected. After reading information about empirical evidence and mechanism, plausibility rating increased in both texts. Most participants provided same types of justification for both texts (34% mainly used empirical evidence; while 38% mainly used mechanism). For participants who provided different types of justification, most of the them (26%) mainly used empirical evidence for the high-plausible text and mainly used mechanism for the low-plausible text. This pattern was expected as mechanistic information helped participants to understand the causal relationship between variables in the low-plausible text, while it was easy to understand the relationship in the high-plausible text so empirical evidence was used. However, the pattern of results was different in reading. Overall, participants spent more time reading mechanistic information than empirical evidence. Concerning empirical evidence, participants spent more time in the low-plausible than high-plausible text, which was in contrast to the expectation. One possible reason was that differences in comprehensibility between the mechanistic information and empirical evidence influenced reading time more than the main manipulation. Thus, plausibility rating, types of justification, and reading time may reflect different cognitive process in this study.
Brem, S. K., & Rips, L. J. (2000). Explanation and evidence in informal argument. Cognitive Science, 24(4), 573-604.
Brocher, T. M., Page, R. A., Stauffer, P. H., & Hendley II, J. W. (2014). Progress Toward a Safer Future Since the 1989 Loma Prieta Earthquake. US Geological Survey Fact Sheet, 151-99.
Glassner, A., Weinstock, M., & Neuman, Y. (2005). Pupils' evaluation and generation of evidence and explanation in argumentation. British Journal of Educational Psychology, 75(1), 105-118.
Henderson, J. M. (2003). Human gaze control during real-world scene perception. Trends in cognitive sciences, 7(11), 498-504.
Ho, H. N. J., Tsai, M. J., Wang, C. Y., & Tsai, C. C. (2014). Prior knowledge and online inquiry-based science reading: Evidence from eye tracking. International journal of science and mathematics education, 12(3), 525-554.
Ide, S., Yabe, S., & Tanaka, Y. (2016). Earthquake potential revealed by tidal influence on earthquake size–frequency statistics. Nature Geoscience, 9(11), 834-837.
Jian, Y. C. (2016). Fourth graders' cognitive processes and learning strategies for reading illustrated biology texts: eye movement measurements. Reading Research Quarterly, 51(1), 93-109.
Jonassen, D. H., & Ionas, I. G. (2008). Designing effective supports for causal reasoning. Educational Technology Research and Development, 56(3), 287-308.
Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological review, 87(4), 329–354.
Kaakinen, J. K., Hyönä, J., & Keenan, J. M. (2003). How prior knowledge, WMC, and relevance of information affect eye fixations in expository text. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 447
Knight, A. M., McNeill, K. L., Corrigan, S., Barber, J., College, B., Knight, A. M., ... & Barber, J. (2013). Student assessments for reading and writing scientific arguments. In annual meeting of the American Educational Research Association, San Francisco.
Knight, A. M. (2015). Students' abilities to critique scientific evidence when reading and writing scientific arguments(Doctoral dissertation, Boston College).
Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Mit Press.
Koslowski, B., Marasia, J., Chelenza, M., & Dublin, R. (2008). Information becomes evidence when an explanation can incorporate it into a causal framework. Cognitive Development, 23(4), 472-487.
Koslowski, B., & Masnick, A. (2012). Causal reasoning and explanation. En U. Goswami (Ed.), Handbook of child cognitive development (2.a ed., pp. 377-398). Oxford: Blackwell Publishers
Kuhn, D. (1993). Connecting scientific and informal reasoning. Merrill-Palmer Quarterly (1982-), 74-103.
Hegarty, M., Mayer, R. E., & Green, C. E. (1992). Comprehension of arithmetic word problems: Evidence from students' eye fixations. Journal of educational psychology, 84(1), 76.
Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The quarterly journal of experimental psychology, 62(8), 1457-1506.
Sandoval, W. A., & Cam, A. (2011). Elementary children’s judgments of the epistemic status of sources of justification. Science Education, 95(3), 383-408.
Scharrer, L., Bromme, R., Britt, M. A., & Stadtler, M. (2012). The seduction of easiness: How science depictions influence laypeople’s reliance on their own evaluation of scientific information. Learning and Instruction, 22(3), 231-243.
Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). A closer look at split visual attention in system-and self-paced instruction in multimedia learning. Learning and instruction, 20(2), 100-110.
Sitharam, T. G., James, N., & Kolathayar, S. (2018). Local Site Effects for Seismic Zonation. In Comprehensive Seismic Zonation Schemes for Regions at Different Scales (pp. 75-108). Springer, Cham.
Stone, W. C., Yokel, F. Y., Celebi, M., Hanks, T., & Leyendecker, E. V. (1987). Engineering aspects of the September 19, 1985 Mexico earthquake. NBS Building Science Series, 165, 207.
Tsuruoka, H., Ohtake, M., & Sato, H. (1995). Statistical test of the tidal triggering of earthquakes: contribution of the ocean tide loading effect. Geophysical Journal International, 122(1), 183-194.
Yang, F. Y. (2017). Examining the reasoning of conflicting science information from the information processing perspective—an eye movement analysis. Journal of Research in Science Teaching, 54(10), 1347-1372.
陳學志、賴惠德與邱發忠(2010)。眼球追蹤技術在學習與教育上的應用。教育科學研究期刊, 55(4),39-68。
郭俊翔(2019)。為什麼會感覺比震央晃?臺北盆地的場址效應。科學月刊,597,44-47。
顏妙璇與楊芳瑩(2016)。眼球追蹤技術在科學教育中的方法與應用。邱美虹 (編著),臺灣科學教育研究與實踐:挑戰與機會。台北市:高等教育
十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校─自然科學領域。2019年4月10日檢自:https://www.naer.edu.tw/files/15-1000-15486,c639-1.php?Lang=zh-tw
中央氣象局地震測報中心。2019年9月21日檢自:https://scweb.cwb.gov.tw/zh-tw/earthquake/data