簡易檢索 / 詳目顯示

研究生: 傅品齊
Fu, Pin-Chi
論文名稱: 多重技術整合之微機電式μDMFC開發與性能評估
Development and performance evaluation of MEMS-based μDMFCs with integrating multiple technologies
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 113
中文關鍵詞: 直接甲醇燃料電池多孔矽穿孔矽二元金屬界面活性劑
英文關鍵詞: direct methanol fuel cell, porous silicon, through silicon via, binary metal, surfactant
DOI URL: http://doi.org/10.6345/THE.NTNU.DME.010.2018.E08
論文種類: 學術論文
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直接甲醇燃料電池(Direct methanol fuel cell, DMFC)具備能於低溫下工作、能量密度高、啟動速度快、燃料易取得、易攜帶、安全與穩定與低污染等優點,因此在未來有希望能取代鋰電池成為新一代的行動能源裝置。本研究以微機電系統(Micro-electromechanical system, MEMS)技術製作微型直接甲醇燃料電池(DMFC) ,並簡化元件結構與降低生產成本,以因應未來將其應用於行動電子產品之微小化需求。本研究主要以矽晶片作為燃料電池之基材,並整合「TMAH濕蝕刻技術」、「光輔助電化學蝕刻技術」、「PtRu二元金屬化鍍技術」以及「甲醇改質技術」,製作微流道搭配多孔矽(Porous silicon, PS),以及微流道搭配穿孔矽(Through silicon via, TSV) 擴散層結構之燃料電池電極板,並將其應用於微型直接甲醇燃料電池的製作。
    本研究成功將PtRu二元金屬均勻複合於石墨烯與奈米碳管表面(PtRu/G-CNT),其Pt與Ru含量比分別為34.1 Wt.%與2.6 Wt.%,而在半電池表現,PtRu/G-CNT之氧化電流峰值為5 mA/cm2,是Pt/G-CNT以及PtRu/G的2.02倍與2.4倍。在電極組合部分,陽極與陰極分別使用多孔矽擴散層電極和穿孔矽擴散層電極的組合(PS+TSV),能得到最佳的電池性能表現,其最大開路電壓為0.4 V,與PS+PS相比增加約1.5倍,而與TSV+TSV相比增加約6.7倍。在添加界面活性劑改質甲醇燃料的評估試驗中得知,界面活性劑MA適於作為甲醇之濕潤劑,並能從添加濃度控制對甲醇氧化能力與濕潤性之影響,同時也能增加二氧化碳氣泡脫離,避免覆蓋觸媒層造成毒化,進而提升燃料電池之性能表現。在添加界面活性劑MA量為0.1 %時,其最大功率密度為0.336 mW/cm2與最大開路電壓為0.48 V,相較於未添加界面活性劑MA分別提升了1.4倍與1.2倍,說明加入少量界面活性劑能促進甲醇藉由多孔矽擴散至觸媒層進行反應,但若加入過多界面活性劑將會影響甲醇氧化效率,因而造成電池性能的下降。

    Direct methanol fuel cell (DMFC) has the advantages of being able to work at low temperature, high energy density, fast starting speed, easy fuel availability, easy portability, safety, stability, and low pollution. Therefore, DMFCs were thought as the next generation of power suppliers to replace lithium battery in the future. In this study, micro-electromechanical system (MEMS) technology was used to fabricate micro direct methanol fuel cells (DMFCs), simplifying component structure and reducing production costs in order to meet the needs of miniaturization of mobile electronic products in the future. In order to meet the miniaturization demand of portable electronic devices, this research tried to fabricate a μDMFC, simplify component, and lower cost by using MEMS technique. This research used TMAH etching, PEACE, PtRu chemical reduction, and methanol modification to fabricate the porous silicon diffusion layer (PS) electrode with channel structure and through silicon via (TSV) electrode with channel structure.
    This study successfully synthesis PtRu binary metal uniformly to the surface of graphene and carbon nanotubes. The PtRu content ratio is 34.1 wt.% and 2.6 wt.%, respectively. In the half-cell performance, the peak current of oxidation of PtRu/G-CNT is 5 mA/cm2, which is 2.02 times and 2.4 times that of Pt/G-CNT and PtRu/G. Experiments show that using the PS electrode in anode and the TSV electrode in cathode would get the maximum open circuit voltage (0.4 V), which is 1.5 times and 6.7 times that of PS+PS and TSV+TSV. In the evaluation test of adding surfactant-modified methanol fuel, it is known that surfactant MA is suitable as a wetting agent for methanol, and it can influence the oxidation ability and wettability of methanol by concentration controlling. and also increase carbon dioxide bubbles. At the same time, it can improve the performance of the fuel cell by increasing the detachment of carbon dioxide bubbles to avoiding the poison caused by covering catalyst layer. When the amount of MA added is 0.1%, the maximum power density is 0.336 mW/cm2 and ,the maximum open circuit voltage is 0.48 V, which is 1.4 times and 1.2 times than un-added respectively. It is indicated that the addition of a small amount of surfactant can promote the reaction of methanol to the catalyst layer by diffusion of porous. However, if too much surfactant is added, the oxidation efficiency of methanol will be affected, resulting in a decrease in battery performance.

    摘要 i 總目錄 iv 圖目錄 vii 表目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 微機電系統簡介 3 1.3 燃料電池構造簡介及其優點 5 1.3.1 燃料電池的分類 6 1.3.2 質子交換膜燃料電池 9 1.4 微型直接甲醇燃料電池之工作原理與未來挑戰 10 1.5 研究動機 16 第二章 文獻回顧 17 2.1 微/奈米機電系統製程應用於燃料電池之製作 17 2.2 多孔矽應用於燃料電池擴散層 22 2.2.1 多孔矽簡介 22 2.2.2 電化學蝕刻概論 23 2.2.3 光輔助電化學蝕刻之多孔矽製備法 26 2.2.4 多孔矽於燃料電池之應用 28 2.3 結合奈米碳材之燃料電池製作 34 2.3.1 碳元素材料簡介 34 2.3.2 石墨烯與奈米碳管簡介 35 2.3.3 奈米碳材於燃料電池之應用 38 2.4 界面活性劑 43 2.4.1 界面活性劑的結構與種類 43 2.4.2 界面活性劑對氣泡移除之應用 45 2.4.3 界面活性劑在燃料電池之應用 45 第三章 實驗設計與規劃 49 3.1 實驗設計 49 3.2 實驗規劃 52 3.2.1 二元金屬化鍍於奈米碳材 52 3.2.2 流場與擴散層之圖案定義 55 3.2.3 濕式蝕刻製程 62 3.2.4 直接甲醇燃料電池組裝流程 68 3.3 實驗設備 72 第四章 實驗結果與討論 74 4.1 化鍍PtRu/G-CNT複合材料之製作 74 4.1.1 PtRu/G-CNT形貌分析 74 4.1.2 PtRu/G-CNT含量分析 77 4.1.3 半電池電性測量 81 4.2 電池元件之製作 84 4.2.1 微流道深蝕刻製程 84 4.2.2 光化學輔助蝕刻製程 86 4.2.3 微流道搭配穿孔矽蝕刻製程 95 4.2.4 直接甲醇燃料電池組裝 96 4.3 全電池性能測試 97 4.3.1 電極組合之性能測試與評估 98 4.3.2 甲醇改質之性能測試與評估 99 第五章 結論與未來展望 104 5.1 結論 104 5-2 未來展望 105 參考文獻 107

    1. 高志勇 等人, "直接甲醇燃料電池製程技術發展現況", 工業材料雜誌, 193 (2003) 111-119
    2. 楊志忠 等人, "燃料電池的發展現況", 科學發展, 367 (2003)
    3. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, (2003).
    4. 楊啟榮, "微機電系統技術導論", 國立台灣師範大學上課講義 (2001).
    5. 蔡英文 等人, "國際Micro Fuel Cell 發展現況", 工業材料雜誌, 283 (2010) 135-144
    6. W. Y. Sim, G. Y. Kim, and S. S. Yang, "Fabrication of micro power source (MPS) using a micro direct methanol fuel cell (DMFC) for the medical application.", Journal of Micro-electromechanical Systems, (2001) 341-344
    7. Sundmacher, K. and K. Scott. "Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapor-liquid-solid system.", Chemical Engineering Science, 54 (1999) 2927-2936
    8. https://archive.eettaiwan.com/www.eettaiwan.com/ART_8800691903_675763_NT_fd702bc6.HTM
    9. https://www.itri.org.tw/chi/Content/MSGPic01/contents.aspx?&SiteID=1&MmmID=620624053553646440&CatID=620624053750070410&MSID=62063326040172627 ,工業技術研究院綠色能源DMFC
    10. S. K. Kamarudin, W. R. W. Daud, S. L. Ho, and U. A. Hasran, "Overview on the challenges and developments of micro-direct", Journal of Power Sources, 163 (2007) 743-754.
    11. Huichao Deng et al., "Investigations of silicon-based air-breathing micro direct methanol fuel cells with different anode flow fields", Microelectronic Engineering 111 (2013) 180–184
    12. H. C. Peng et al., "A high efficient micro-proton exchange membrane fuel cell by integrating micronano synergical structures", Journal of Power Sources 225 (2013) 277-285
    13. Longjuan Pu et al., " Performance improvement of passive direct methanol fuel cells with surface-patterned Nafion® membranes", Applied Surface Science 327 (2015) 205–212
    14. A. Uhir, "Electrolytic shapping of germanium and silicon", Bell System Technical Journal, Vol. 35 (1956) pp. 333-341
    15. Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, "Formation and properties of porous silicon and its application", Journal of the Electrochemical society, Vol. 122 (1975) pp. 1351-1358
    16. C. Pickering, M. J. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, "Optical studies of the structure of porous films formed in p-type degenerate and non-degenerate silicon", Journal of Physics C: Solid State Physics, Vol. 17 (1984) pp. 6535-6552
    17. V. Lehmann, U. Gosele, "Porous silicon formation a quantum wire effect", Applied Physics Letter, Vol. 58 (1991) pp. 856-858
    18. A. Richter, "Current-induced light-emission from a porous silicon device", IEEE Electron Device Letter, Vol. 12 (1991) pp. 691-692
    19. P.M. Fauchet, L. Tsybeskov, S.P Duttagupta, K.D. Hirschman, "Stable photoluminescence and electroluminescence from porous silicon" Thin solid films, Vol. 297 (1997) pp. 254-260
    20. Claudia Pacholski, " Photonic Crystal Sensors Based on Porous Silicon", Sensors 2013, 13(4), 4694-4713.
    21. W. Lang, P. Steiner, H. Sandmaier, "Porous silicon: a novel material for Micro systems", Sensors and Actuators A, 51 (1995) 31-36.
    22. V. Lehmann, "The physics of macropore formation in low-doped n-type silicon", Journal of the Electrochemical Society, 140(1993) 2836-2843.
    23. M. D. B. Charlton, H. W. Lau, and G. J. Parker, "High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures", Microengineering Applications in Optoelectronics, (1996) 1-9.
    24. V. Lehmann, "Porous silicon formation and other photoelectrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, 106 (1996) 402-405.
    25. A. Splinter et al., "New porous silicon formation technology using internal current generation with galvanic elements", Sensors and Actuators A, 92 (2001) 394-399.
    26. C.M.A Ashruf, P. J. French, P.M.M.C Bressers, J.J Kelly, "Galvanic porous silicon formation without external contact", Sensors and Actuators A, 74 (1999) 118-122.
    27. S. Izuo, H. Ohji, and P. J. French, "A novel electrochemical etching technique for n-type silicon", Sensors and Actuators A, 97-98 (2002) 720-724.
    28. G. Barillaro, A. Nannini, and M. Piotto, "Electrochemical etching in HF solution for silicon micromachining", Sensors and Actuators A, 102, (2002) 195-201.
    29. G. D. Arrigo, S. Coffa, and C. Spinella, "Advanced micromachining processes for micro-opto-electromechanical components and devices", Sensors and Actuators A, 99 (2002) 112-118.
    30. H. Ohji, P. J. Trimp, and P. J. French, "Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid", Sensors and Actuators, 73 (1999) 95-100.
    31. V. Lehmann, R. Stengl, H. Reisinger, R. Detemple, and W. Theiss, "Optical shortpass filters based on macroporous silicon", Applied Physics Letters, 78 (2001) 589.
    32. Chi-Yuan Lee, Shuo-Jen Lee, Yuh-Chung Hu, Wen-Pin Shih, Wei-Yuan Fan, and Chih-Wei Chuang, "Integration of silicon micro-hole arrays as a gas diffusion layer in a micro-fuel cell", International journal of hydrogen energy, 34 (2009) 6457-6464.
    33. Ali A. Ensaf , M. Jafari-Asl, B. Rezaei, M. Mokhtari Abarghoui, H. Farrokhpour, "Facile synthesis of PtePd@Silicon nanostructure as an advanced electrocatalyst for direct methanol fuel cells", Journal of Power Sources 282 (2015) 452-461
    34. Zaoxi Yu, Dan Zheng, Kun Zhang, Tingfang Yang, Ying Chen, Xinxin Li, "Optimally catalyzed porous silicon electrode of self breathing micro fuel cells", Microsyst Technol (2017) 23:3257–3262
    35. Yongjun Li , Liang Xu, Huibiao Liu, Yuliang Li "Graphdiyne and graphyne: from theoretical predictions to practical construction", Chem. Soc. Rev., 2014, 43, 2572-2586
    36. A. Ouerghi, M. Ridene, C. Mathieu, N. Gogneau, R. Belkhou "From nanographene to monolayer graphene on 6H-SiC (0001) substrate", Appl. Phys. Lett. 102, 253108 (2013)
    37. Sun Hwa Lee, Duck Hyun Lee, Won Jun Lee, Sang Ouk Kim, "Tailored Assembly of Carbon Nanotubes and Graphene", Advence Functional Materials Volume 21, Issue 8, pages 1338–1354, April 22, 2011.
    38. Teri Wang Odom, Jin-Lin Huang, Philip Kim and Charles M. Lieber, " Atomic structure and electronic properties of single-walled carbon nanotubes ", Nature, 391(1998) 62–64.
    39. W. Hoenlein, F. Kreupl, G.S. Duesberg, A.P. Graham, M. Liebau, R. Seidel, and E. Unger, "Carbon nanotubes for microelectronics: status and future prospects.", Material Science and Engineering C, 23(2003) 663-669
    40. Phaedon Avouris, Joerg Appenzeller, Richard Martel, and Shalom J. wind, "Carbon nanotube electronics.", Proceeding of the IEEE, 91(2003) 1772-1784
    41. David Mann, Ali Javey, Jing Kong, Qian Wang, and Hongjie Dai, "Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts", 3(2003) 1541-1544
    42. Jianwei Liu, Xiaojun Li, Amanda Schrand, Toshiyuki Ohashi, and Liming Dai, "Controlled Syntheses of Aligned Multi-Walled Carbon nanotubes: Catalyst Particle Size and Density Control via Layer-by-Layer Assembling", Chem. Mater., 17(2005) 6599-6604
    43. Ming-Chi Tsai, Tsung-Kuang Yeh, Charn-Ying Chen, and Chuen-Horng Tsai, "A catalytic gas diffusion layer for improving the efficiency of a direct methanol fuel cell", Electrochemistry Communications, 9 (2007) 2299–2303
    44. Jian-Ding Qiu et al., " Controllable Deposition of Platinum Nanoparticles on Graphene As an Electrocatalyst for Direct Methanol Fuel Cells", Department of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
    45. Richa Baronia et al., " Efficient electro-oxidation of methanol using PtCo nanocatalysts supported reduced graphene oxidematrix as anode for DMFC", International journal of hydrogen energy 42 (2017) 10238-10247.
    46. Http://210.60.224.4/ct/content/1973/00120048/0016.htm
    47. Http://www.ch.vnu.edu.tw/pws/luiseliu/界面活性劑.doc
    48. Http://www.shs.edu.tw/works/essay/2010/03/2010032921510671.pdf
    49. Http://highscope.ch.ntu.edu.tw/wordpress/?p=27484
    50. Z. J. Wei, Y. Y. Wang, C. C. Wan, and C. H. Huang, "Study of wetters in nickel electroforming of 3D microstructures", Materials Chemistry and Physics, 63 (2000) 235-239.
    51. Chii-Rong Yang, Cheng-Hao Yang and Po-Ying Chen, "Study on anisotropic silicon etching characteristics in various surfactant-added tetramethylammonium hydroxide water solution", Journal of the micromechanics and micro engineering, 15 (2005) 2028-2037
    52. Julia A. Zakharova, Olga A. Novoskoltseva, Olga A. Pyshkina, Evgeny A. Karpushkin, Vladimir G. Sergeyev, "Controlled modification of Nafion membrane with cationic surfactant", Colloid and Polymer Science (2018) 296:835–846
    53. C. R. Yang, P. Y. Chen, C. H. Yang, Y. C. Chiou, and R. T. Lee, "Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions", Sensors and Actuators A, 119 (2005) 271-281.
    54. Neetu Jha et al., "Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell", International journal of hydrogen energy 36 (2011) 7284-7290.
    55. Zhenyuan Ji et al., " Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation", New J.Chem., 2012,36, 1774–1780.

    無法下載圖示 本全文未授權公開
    QR CODE