研究生: |
蔡承恩 Tsai, Cheng-En |
---|---|
論文名稱: |
隱密種物種形成的基因組分析:灰胸竹雞(Bambusicola thoracica)的種化基因組學 Genomic Landscape of a Recently Diverged Cryptic Species: Speciation Genomics of Chinese Bamboo Partridge Bambusicola thoracica |
指導教授: |
李壽先
Li, Shou-Hsien |
口試委員: |
李壽先
Li, Shou-Hsien 王弘毅 Wang, Hurng-Yi 可文亞 Ko, Wen-Ya 李承叡 Lee, Cheng-Ruei 廖本揚 Liao, Ben-Yang |
口試日期: | 2024/06/18 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 144 |
中文關鍵詞: | 隱密種 、種化基因組 、生殖隔離 |
英文關鍵詞: | cryptic species, speciation genomics, reproductive isolation |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401399 |
論文種類: | 學術論文 |
相關次數: | 點閱:65 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
物種的界定,是生物學界中最基本的議題之一。隨著遺傳分析技術的進步,我們可以容易地取得非模式生物的完整基因組序列,進而結合形態、生態棲位等資訊,以綜合性的方法找到過去未被辨識的物種,以正確評估生物多樣性。遺傳數據顯示動物界中許多生物擁有形態上難以辨識,但族群間經歷獨立演化的歷史,應被視為獨立的物種,這些物種可稱為隱密種(cryptic species)。隱密種在寄生蟲、線蟲類及節肢動物最具有代表性,也常見有脊椎動物的案例,但其形成機制仍然罕為深入探究。在此,我透過灰胸竹雞了解隱密種種化過程及可能機制,並找出物種形成(speciation)的候選基因(candidate genes)。過去發現在單型種的灰胸竹雞有分屬兩個不同演化支系的地理族群:以四川陝西為主的西部族群,以及由貴州、湖南和湖北以東的中東部族群。本研究使用全基因組重定序序列,得到灰胸竹雞西部族群、中東部族群以及作為外群的台灣竹雞完整族群基因組數據。分析結果顯示,西部族群與中東部族群已經分化40萬年之久,並且期間沒有基因流。以模型檢測在中東部族群與西部族群之間的物種界定,也顯示灰胸竹雞的東西部族群該分為兩個物種。而在兩個潛在隱密種之間基因組高度分化區域內,共找到19個粒線體功能相關基因,5個與聲音感知或鳴唱學習有關的基因,5個與營養代謝及生長相關的基因,2個與性腺發育及精子生成有關的基因以及2個和羽色有關的基因。除此之外,在性染色體(Z)上兩處長度大約2 Mb大片段區域顯著的高度分化,暗示性染色體在灰胸竹雞種化的重要性。本研究第一次描述雞型目中的隱密種,填補了對於生物多樣性描述上缺失的一塊,並且有助於對隱密種種化機制與過程的了解。
Species delineation is one of the fundamental issues in biology. Technological advances have made accessing complete genomic information for non-model organisms feasible. It allows us to combine genetic data with morphological and ecological characteristics to identify previously undetected species. It has been observed that many animals exhibit similar morphological traits but have independent evolutionary histories among populations, leading to the recognition of cryptic species that are hard to distinguish morphologically. Cryptic species are often found in parasites and nematodes while also being commonly encountered among vertebrates. Furthermore, the mechanism and process of cryptic species formation is still poorly studied. So, I used the Chinese bamboo partridge, a monotypic species, as an avian system to study how cryptic species might arise. Previous studies have revealed two distinct evolutionary lineages within the Chinese bamboo partridge: the Western lineage, mainly distributed from Sichuan and Shaanxi, and the Central-Eastern lineage, spanning from Guizhou and Hunan to eastern China. Here, I used the whole-genome sequences to infer the divergence history of the two lineages, with the Taiwan bamboo partridge serving as an outgroup. I demonstrate that the two lineages of Chinese Bamboo partridges diverged around 400,000 years ago, with no gene flow during their diversification process. Model-based species delimitation suggests that the Chinese bamboo partridge should be subdivided into two species. In a highly differentiated region between two potential cryptic species, 19 genes related to mitochondrial function, 5 genes associated with sound perception or song learning, 5 genes involved in nutrient metabolism and growth, 2 genes linked to gonad development and spermatogenesis, and 2 genes related to feather coloration were identified. Additionally, two large segments on the sex chromosome (Z), each approximately 2 Mb in length, showed significant differentiation. This suggests that sex chromosome differentiation plays a crucial role in the speciation events of the Chinese bamboo partridge. This study is the first to describe cryptic species within the Galliformes, filling a gap in understanding biodiversity and shedding light on cryptic species speciation.
Adams, D. C., Berns, C. M., Kozak, K. H., & Wiens, J. J. (2009). Are rates of species diversification correlated with rates of morphological evolution? Proceedings of the Royal Society B: Biological Sciences, 276(1668), 2729–2738. https://doi.org/10.1098/rspb.2009.0543
Adams, M., Raadik, T. A., Burridge, C. P., & Georges, A. (2014). Global Biodiversity Assessment and Hyper-Cryptic Species Complexes: More Than One Species of Elephant in the Room? Systematic Biology, 63(4), 518–533. https://doi.org/10.1093/sysbio/syu017
Ahmadi Rastegar, D., Sharifi Tabar, M., Alikhani, M., Parsamatin, P., Sahraneshin Samani, F., Sabbaghian, M., Sadighi Gilani, M. A., Mohammad Ahadi, A., Mohseni Meybodi, A., Piryaei, A., Ansari-Pour, N., Gourabi, H., Baharvand, H., & Salekdeh, G. H. (2015). Isoform-Level Gene Expression Profiles of Human Y Chromosome Azoospermia Factor Genes and Their X Chromosome Paralogs in the Testicular Tissue of Non-Obstructive Azoospermia Patients. Journal of Proteome Research, 14(9), 3595–3605. https://doi.org/10.1021/acs.jproteome.5b00520
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545. https://doi.org/10.1111/ecog.01132
Aldhebiani, A. Y. (2018). Species concept and speciation. Saudi Journal of Biological Sciences, 25(3), 437–440. https://doi.org/10.1016/j.sjbs.2017.04.013
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655–1664. https://doi.org/10.1101/gr.094052.109
Alizon, S., Kucera, M., & Jansen, V. A. A. (2008). Competition between cryptic species explains variations in rates of lineage evolution. Proceedings of the National Academy of Sciences, 105(34), 12382–12386. https://doi.org/10.1073/pnas.0805039105
Alström, P., Alström, P., & Ranft, R. (2003). The use of sounds in avian systematics and the importance of bird sound archives. Bulletin of the British Ornithologists’ Club, 123A, 114--135.
Andersson, M. (1994). Sexual Selection. Princeton University Press.
Bai, M., Quinn, S., Trivedi, S., Kifor, O., Pearce, S. H. S., Pollak, M. R., Krapcho, K., Hebert, S. C., & Brown, E. M. (1996). Expression and Characterization of Inactivating and Activating Mutations in the Human Ca2+o-sensing Receptor*. Journal of Biological Chemistry, 271(32), 19537–19545. https://doi.org/10.1074/jbc.271.32.19537
Baltazar-Soares, M., Karell, P., Wright, D., Nilsson, J.-Å., & Brommer, J. E. (2024). Genomic basis of melanin-associated phenotypes suggests colour-specific environmental adaptations in tawny owls. Molecular Ecology, 33(4), e17247. https://doi.org/10.1111/mec.17247
Balthazart, J., & Taziaux, M. (2009). The underestimated role of olfaction in avian reproduction? Behavioural Brain Research, 200(2), 248–259. https://doi.org/10.1016/j.bbr.2008.08.036
Bao, W., Kojima, K. K., & Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6(1), 11. https://doi.org/10.1186/s13100-015-0041-9
Barrowclough, G. F., Cracraft, J., Klicka, J., & Zink, R. M. (2016). How Many Kinds of Birds Are There and Why Does It Matter? PLOS ONE, 11(11), e0166307. https://doi.org/10.1371/journal.pone.0166307
Bar-Yaacov, D., Hadjivasiliou, Z., Levin, L., Barshad, G., Zarivach, R., Bouskila, A., & Mishmar, D. (2015). Mitochondrial Involvement in Vertebrate Speciation? The Case of Mito-nuclear Genetic Divergence in Chameleons. Genome Biology and Evolution, 7(12), 3322–3336. https://doi.org/10.1093/gbe/evv226
Bateson, W. (1909). Heredity and Variation in Modern Lights. In A. C. Seward (Ed.), Darwin and Modern Science: Essays in Commemoration of the Centenary of the Birth of Charles Darwin and of the Fiftieth Anniversary of the Publication of The Origin of Species (pp. 85–101). Cambridge University Press. https://doi.org/10.1017/CBO9780511693953.007
Beheregaray, L. B., & Caccone, A. (2007). Cryptic biodiversity in a changing world. Journal of Biology, 6(4), 9. https://doi.org/10.1186/jbiol60
Bensch, S., Péarez‐Tris, J., Waldenströum, J., & Hellgren, O. (2004). LINKAGE BETWEEN NUCLEAR AND MITOCHONDRIAL DNA SEQUENCES IN AVIAN MALARIA PARASITES: MULTIPLE CASES OF CRYPTIC SPECIATION? Evolution, 58(7), 1617–1621. https://doi.org/10.1111/j.0014-3820.2004.tb01742.x
Bhupana, J. N., Huang, B., Liou, G., Calkins, M. J., & Lin‐Chao, S. (2020). Gas7 knockout affects PINK1 expression and mitochondrial dynamics in mouse cortical neurons. FASEB bioAdvances, 2(3), 166–181. https://doi.org/10.1096/fba.2019-00091
Bhupana, J. N., Huang, B.-T., Chang, Y.-L., & Chao, S. L. (2019). Gas7 regulates mitochondrial morphology and physiology. The FASEB Journal, 33(S1), 660.2-660.2. https://doi.org/10.1096/fasebj.2019.33.1_supplement.660.2
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., & Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3), 148–155. https://doi.org/10.1016/j.tree.2006.11.004
Blier, P. U., Lemieux, H., & Pichaud, N. (2014). Holding our breath in our modern world: Will mitochondria keep the pace with climate changes? Canadian Journal of Zoology, 92(7), 591–601. https://doi.org/10.1139/cjz-2013-0183
Bonadonna, F., & Mardon, J. (2013). Besides Colours and Songs, Odour is the New Black of Avian Communication. In M. L. East & M. Dehnhard (Eds.), Chemical Signals in Vertebrates 12 (pp. 325–339). Springer. https://doi.org/10.1007/978-1-4614-5927-9_26
Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao, T., Ye, J., & Zaretskaya, I. (2013). BLAST: A more efficient report with usability improvements. Nucleic Acids Research, 41(Web Server issue), W29-33. https://doi.org/10.1093/nar/gkt282
Bourgeois, Y. X. C., Bertrand, J. A. M., Delahaie, B., Cornuault, J., Duval, T., Milá, B., & Thébaud, C. (2016). Candidate Gene Analysis Suggests Untapped Genetic Complexity in Melanin-Based Pigmentation in Birds. Journal of Heredity, 107(4), 327–335. https://doi.org/10.1093/jhered/esw017
Boykin, L. M., Armstrong, K. F., Kubatko, L., & De Barro, P. (2012). Species Delimitation and Global Biosecurity. Evolutionary Bioinformatics, 8, EBO.S8532. https://doi.org/10.4137/EBO.S8532
Burton, R. S. (2022). The role of mitonuclear incompatibilities in allopatric speciation. Cellular and Molecular Life Sciences, 79(2), 103. https://doi.org/10.1007/s00018-021-04059-3
Burton, R. S., & Barreto, F. S. (2012). A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Molecular Ecology, 21(20), 4942–4957. https://doi.org/10.1111/mec.12006
Burton, R. S., Pereira, R. J., & Barreto, F. S. (2013). Cytonuclear Genomic Interactions and Hybrid Breakdown. Annual Review of Ecology, Evolution, and Systematics, 44(1), 281–302. https://doi.org/10.1146/annurev-ecolsys-110512-135758
Calahorra-Oliart, A., Ospina-Garcés, S. M., & León-Paniagua, L. (2021). Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): do morphological data support molecular evidence? Journal of Mammalogy, 102(1), 54–68. https://doi.org/10.1093/jmammal/gyaa116
Campbell, K. K., Braile, T., & Winker, K. (2016). Integration of Genetic and Phenotypic Data in 48 Lineages of Philippine Birds Shows Heterogeneous Divergence Processes and Numerous Cryptic Species. PLOS ONE, 11(7), e0159325. https://doi.org/10.1371/journal.pone.0159325
Caro, S. P., & Balthazart, J. (2010). Pheromones in birds: Myth or reality? Journal of Comparative Physiology A, 196(10), 751–766. https://doi.org/10.1007/s00359-010-0534-4
Casillas, S., & Barbadilla, A. (2017). Molecular Population Genetics. Genetics, 205(3), 1003–1035. https://doi.org/10.1534/genetics.116.196493
Ceballos, G., & Ehrlich, P. R. (2009). Discoveries of new mammal species and their implications for conservation and ecosystem services. Proceedings of the National Academy of Sciences, 106(10), 3841–3846. https://doi.org/10.1073/pnas.0812419106
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4(1), s13742-015-0047–0048. https://doi.org/10.1186/s13742-015-0047-8
Charlesworth, B. (1994). The effect of background selection against deleterious mutations on weakly selected, linked variants. Genetics Research, 63(3), 213–227. https://doi.org/10.1017/S0016672300032365
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Condro, M. C., & White, S. A. (2014). Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning. Journal of Comparative Neurology, 522(1), 169–185. https://doi.org/10.1002/cne.23394
Costello, M. J., May, R. M., & Stork, N. E. (2013). Can We Name Earth’s Species Before They Go Extinct? Science, 339(6118), 413–416. https://doi.org/10.1126/science.1230318
Coyne, J. A. (2018). “Two Rules of Speciation” revisited. Molecular Ecology, 27(19), 3749–3752. https://doi.org/10.1111/mec.14790
Coyne, J. A., & Orr, H. A. (1989). Two rules of speciation. In D. Otte, & J. Endler (Eds.). In Speciation and Its Consequences (pp. 180–207). Sinauer Associates.
Cronemberger, Á. A., Aleixo, A., Mikkelsen, E. K., & Weir, J. T. (2020). Postzygotic isolation drives genomic speciation between highly cryptic Hypocnemis antbirds from Amazonia. Evolution, 74(11), 2512–2525. https://doi.org/10.1111/evo.14103
Cui, L., Lv, C., Zhang, J., Mo, C., Lin, D., Li, J., & Wang, Y. (2017). Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression. Gene, 615, 57–67. https://doi.org/10.1016/j.gene.2017.03.009
Damm, S., Schierwater, B., & Hadrys, H. (2010). An integrative approach to species discovery in odonates: From character-based DNA barcoding to ecology. Molecular Ecology, 19(18), 3881–3893. https://doi.org/10.1111/j.1365-294X.2010.04720.x
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008
Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray.
De Queiroz, K. (2011). Branches in the lines of descent: Charles Darwin and the evolution of the species concept. Biological Journal of the Linnean Society, 103(1), 19–35. https://doi.org/10.1111/j.1095-8312.2011.01634.x
Delaneau, O., Howie, B., Cox, A. J., Zagury, J.-F., & Marchini, J. (2013). Haplotype estimation using sequencing reads. American Journal of Human Genetics, 93(4), 687–696. https://doi.org/10.1016/j.ajhg.2013.09.002
Derycke, S., De Meester, N., Rigaux, A., Creer, S., Bik, H., Thomas, W. K., & Moens, T. (2016). Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Molecular Ecology, 25(9), 2093–2110. https://doi.org/10.1111/mec.13597
Derycke, S., Remerie, T., Backeljau, T., Vierstraete, A., Vanfleteren, J., Vincx, M., & Moens, T. (2008). Phylogeography of the Rhabditis (Pellioditis) marina species complex: Evidence for long-distance dispersal, and for range expansions and restricted gene flow in the northeast Atlantic. Molecular Ecology, 17(14), 3306–3322. https://doi.org/10.1111/j.1365-294X.2008.03846.x
Dierckxsens, N., Mardulyn, P., & Smits, G. (2017). NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(4), e18. https://doi.org/10.1093/nar/gkw955
Diniz, G. B., & Bittencourt, J. C. (2019). The Melanin-Concentrating Hormone (MCH) System: A Tale of Two Peptides. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.01280
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635
Dobzhansky, Th. (1936). Studies on Hybrid Sterility. II. Localization of Sterility Factors in Drosophila Pseudoobscura Hybrids. Genetics, 21(2), 113–135.
Domrös, M., & Peng, G. (2012). The Climate of China. Springer Science & Business Media.
Donath, A., Jühling, F., Al-Arab, M., Bernhart, S. H., Reinhardt, F., Stadler, P. F., Middendorf, M., & Bernt, M. (2019). Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research, 47(20), 10543–10552. https://doi.org/10.1093/nar/gkz833
Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., Shamim, M. S., Machol, I., Lander, E. S., Aiden, A. P., & Aiden, E. L. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 356(6333), 92–95. https://doi.org/10.1126/science.aal3327
Durand, N. C., Shamim, M. S., Machol, I., Rao, S. S. P., Huntley, M. H., Lander, E. S., & Aiden, E. L. (2016). Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Systems, 3(1), 95–98. https://doi.org/10.1016/j.cels.2016.07.002
Eberle, J., Bazzato, E., Fabrizi, S., Rossini, M., Colomba, M., Cillo, D., Uliana, M., Sparacio, I., Sabatinelli, G., Warnock, R. C. M., Carpaneto, G., & Ahrens, D. (2019). Sex-Biased Dispersal Obscures Species Boundaries in Integrative Species Delimitation Approaches. Systematic Biology, 68(3), 441–459. https://doi.org/10.1093/sysbio/syy072
Eberle, J., Warnock, R. C. M., & Ahrens, D. (2016). Bayesian species delimitation in Pleophylla chafers (Coleoptera)—The importance of prior choice and morphology. BMC Evolutionary Biology, 16, 94. https://doi.org/10.1186/s12862-016-0659-3
Eda, M., Yamasaki, T., Izumi, H., Tomita, N., Konno, S., Konno, M., Murakami, H., & Sato, F. (2020). Cryptic species in a Vulnerable seabird: Short-tailed albatross consists of two species. Endangered Species Research, 43, 375–386. https://doi.org/10.3354/esr01078
Egea, E., David, B., Choné, T., Laurin, B., Féral, J. P., & Chenuil, A. (2016). Morphological and genetic analyses reveal a cryptic species complex in the echinoid Echinocardium cordatum and rule out a stabilizing selection explanation. Molecular Phylogenetics and Evolution, 94, 207–220. https://doi.org/10.1016/j.ympev.2015.07.023
Ellegren, H. (2011). Emergence of male-biased genes on the chicken Z-chromosome: Sex-chromosome contrasts between male and female heterogametic systems. Genome Research, 21(12), 2082–2086. https://doi.org/10.1101/gr.119065.110
Ellison, C. K., Niehuis, O., & Gadau, J. (2008). Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. Journal of Evolutionary Biology, 21(6), 1844–1851. https://doi.org/10.1111/j.1420-9101.2008.01608.x
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust Demographic Inference from Genomic and SNP Data. PLOS Genetics, 9(10), e1003905. https://doi.org/10.1371/journal.pgen.1003905
Excoffier, L., Marchi, N., Marques, D. A., Matthey-Doret, R., Gouy, A., & Sousa, V. C. (2021). fastsimcoal2: Demographic inference under complex evolutionary scenarios. Bioinformatics, 37(24), 4882–4885. https://doi.org/10.1093/bioinformatics/btab468
Fennessy, J., Bidon, T., Reuss, F., Kumar, V., Elkan, P., Nilsson, M. A., Vamberger, M., Fritz, U., & Janke, A. (2016). Multi-locus Analyses Reveal Four Giraffe Species Instead of One. Current Biology, 26(18), 2543–2549. https://doi.org/10.1016/j.cub.2016.07.036
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
Fišer, C., Robinson, C. T., & Malard, F. (2018). Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology, 27(3), 613–635. https://doi.org/10.1111/mec.14486
Flouri, T., Jiao, X., Rannala, B., & Yang, Z. (2018). Species Tree Inference with BPP Using Genomic Sequences and the Multispecies Coalescent. Molecular Biology and Evolution, 35(10), 2585–2593. https://doi.org/10.1093/molbev/msy147
Fritz, U., Fattizzo, T., Guicking, D., Tripepi, S., Pennisi, M. G., Lenk, P., Joger, U., & Wink, M. (2005). A new cryptic species of pond turtle from southern Italy, the hottest spot in the range of the genus Emys (Reptilia, Testudines, Emydidae). Zoologica Scripta, 34(4), 351–371. https://doi.org/10.1111/j.1463-6409.2005.00188.x
Fu, J., & Wen, L. (2023). Impacts of Quaternary glaciation, geological history and geography on animal species history in continental East Asia: A phylogeographic review. Molecular Ecology, 32(16), 4497–4514. https://doi.org/10.1111/mec.17053
Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565
Funk, W. C., Caminer, M., & Ron, S. R. (2011). High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences, 279(1734), 1806–1814. https://doi.org/10.1098/rspb.2011.1653
Gahr, M. (2000). Neural song control system of hummingbirds: Comparison to swifts, vocal learning (Songbirds) and nonlearning (Suboscines) passerines, and vocal learning (Budgerigars) and nonlearning (Dove, owl, gull, quail, chicken) nonpasserines. Journal of Comparative Neurology, 426(2), 182–196. https://doi.org/10.1002/1096-9861(20001016)426:2<182::AID-CNE2>3.0.CO;2-M
Gahr, M., Güttinger, H.-R., & Kroodsma, D. E. (1993). Estrogen receptors in the avian brain: Survey reveals general distribution and forebrain areas unique to songbirds. Journal of Comparative Neurology, 327(1), 112–122. https://doi.org/10.1002/cne.903270109
Gao, F., Ming, C., Hu, W., & Li, H. (2016). New Software for the Fast Estimation of Population Recombination Rates (FastEPRR) in the Genomic Era. G3 Genes|Genomes|Genetics, 6(6), 1563–1571. https://doi.org/10.1534/g3.116.028233
Garrett, J. E., Capuano, I. V., Hammerland, L. G., Hung, B. C. P., Brown, E. M., Hebert, S. C., Nemeth, E. F., & Fuller, F. (1995). Molecular Cloning and Functional Expression of Human Parathyroid Calcium Receptor cDNAs (∗). Journal of Biological Chemistry, 270(21), 12919–12925. https://doi.org/10.1074/jbc.270.21.12919
Gemmell, N. J., & Akiyama, S. (1996). An efficient method for the extraction of DNA from vertebrate tissues. Trends in Genetics: TIG, 12(9), 338–339. https://doi.org/10.1016/s0168-9525(96)80005-9
Gonçalves, C. I., Carriço, J., Bastos, M., & Lemos, M. C. (2022). Disorder of Sex Development Due to 17-Beta-Hydroxysteroid Dehydrogenase Type 3 Deficiency: A Case Report and Review of 70 Different HSD17B3 Mutations Reported in 239 Patients. International Journal of Molecular Sciences, 23(17), Article 17. https://doi.org/10.3390/ijms231710026
Gorski, K., Jackson, C. B., Nyman, T. A., Rezov, V., Battersby, B. J., & Lehesjoki, A.-E. (2023). Progressive mitochondrial dysfunction in cerebellar synaptosomes of cystatin B-deficient mice. Frontiers in Molecular Neuroscience, 16. https://doi.org/10.3389/fnmol.2023.1175851
Gray, S. M., & McKinnon, J. S. (2007). Linking color polymorphism maintenance and speciation. Trends in Ecology & Evolution, 22(2), 71–79. https://doi.org/10.1016/j.tree.2006.10.005
Gremme, G., Steinbiss, S., & Kurtz, S. (2013). GenomeTools: A Comprehensive Software Library for Efficient Processing of Structured Genome Annotations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(03), 645–656. https://doi.org/10.1109/TCBB.2013.68
Grundt, H. H., Kjølner, S., Borgen, L., Rieseberg, L. H., & Brochmann, C. (2006). High biological species diversity in the arctic flora. Proceedings of the National Academy of Sciences, 103(4), 972–975. https://doi.org/10.1073/pnas.0510270103
Gu, Y.-F., Shu, J.-P., Lu, Y.-J., Shen, H., Shao, W., Zhou, Y., Sun, Q.-M., Chen, J.-B., Liu, B.-D., & Yan, Y.-H. (2023). Insights into cryptic speciation of quillworts in China. Plant Diversity, 45(3), 284–301. https://doi.org/10.1016/j.pld.2022.11.003
Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. (2009). Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data. PLOS Genetics, 5(10), e1000695. https://doi.org/10.1371/journal.pgen.1000695
Gwee, C. Y., Eaton, J. A., Garg, K. M., Alström, P., Van Balen, S. (Bas), Hutchinson, R. O., Prawiradilaga, D. M., Le, M. H., & Rheindt, F. E. (2019). Cryptic diversity in Cyornis (Aves: Muscicapidae) jungle-flycatchers flagged by simple bioacoustic approaches. Zoological Journal of the Linnean Society, 186(3), 725–741. https://doi.org/10.1093/zoolinnean/zlz003
Haribal, M., Dhondt, A., & Rodriguez, E. (2009). Diversity in chemical compositions of preen gland secretions of tropical birds. Biochemical Systematics and Ecology, 37(2), 80–90. https://doi.org/10.1016/j.bse.2008.12.005
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences, 101(41), 14812–14817. https://doi.org/10.1073/pnas.0406166101
Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of Birds through DNA Barcodes. PLOS Biology, 2(10), e312. https://doi.org/10.1371/journal.pbio.0020312
Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O., & Puebla, O. (2019). Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nature Ecology & Evolution, 3(4), Article 4. https://doi.org/10.1038/s41559-019-0814-5
Hijmans, R. J. (2023). geosphere: Spherical Trigonometry. https://github.com/rspatial/geosphere
Hill, G. E. (2015). Mitonuclear Ecology. Molecular Biology and Evolution, 32(8), 1917–1927. https://doi.org/10.1093/molbev/msv104
Hill, G. E. (2019). Reconciling the Mitonuclear Compatibility Species Concept with Rampant Mitochondrial Introgression. Integrative and Comparative Biology, 59(4), 912–924. https://doi.org/10.1093/icb/icz019
Hill, G. E. (2020). Mitonuclear Compensatory Coevolution. Trends in Genetics, 36(6), 403–414. https://doi.org/10.1016/j.tig.2020.03.002
Hirao, A. (2011). The Possible Role of the Uropygial Gland on Mate Choice in Domestic Chicken. International Journal of Zoology, 2011(1), 860801. https://doi.org/10.1155/2011/860801
Hirao, A., Aoyama, M., & Sugita, S. (2009). The role of uropygial gland on sexual behavior in domestic chicken Gallus gallus domesticus. Behavioural Processes, 80(2), 115–120. https://doi.org/10.1016/j.beproc.2008.10.006
Hoff, K. J., & Stanke, M. (2019). Predicting Genes in Single Genomes with AUGUSTUS. Current Protocols in Bioinformatics, 65(1), e57. https://doi.org/10.1002/cpbi.57
Hu, Y., Yan, C., Hsu, C.-H., Chen, Q.-R., Niu, K., Komatsoulis, G. A., & Meerzaman, D. (2014). OmicCircos: A Simple-to-Use R Package for the Circular Visualization of Multidimensional Omics Data. Cancer Informatics, 13, CIN.S13495. https://doi.org/10.4137/CIN.S13495
Huang, Z., Liu, N., Liang, W., Zhang, Y., Liao, X., Ruan, L., & Yang, Z. (2010). Phylogeography of Chinese bamboo partridge, Bambusicola thoracica thoracica (Aves: Galliformes) in south China: Inference from mitochondrial DNA control-region sequences. Molecular Phylogenetics and Evolution, 56(1), 273–280. https://doi.org/10.1016/j.ympev.2010.01.028
Hughes, P. D., & Gibbard, P. L. (2018). Global glacier dynamics during 100 ka Pleistocene glacial cycles. Quaternary Research, 90(1), 222–243. https://doi.org/10.1017/qua.2018.37
Huhta, E., Rytkönen, S., & Solonen, T. (2003). Plumage Brightness of Prey Increases Predation Risk: An Among-Species Comparison. Ecology, 84(7), 1793–1799. https://doi.org/10.1890/0012-9658(2003)084[1793:PBOPIP]2.0.CO;2
Hung, C.-M., Hung, H.-Y., Yeh, C.-F., Fu, Y.-Q., Chen, D., Lei, F., Yao, C.-T., Yao, C.-J., Yang, X.-J., Lai, Y.-T., & Li, S.-H. (2014). Species delimitation in the Chinese bamboo partridge Bambusicola thoracica (Phasianidae; Aves). Zoologica Scripta, 43(6), 562–575. https://doi.org/10.1111/zsc.12071
Huntley, J. W., Keith, K. D., Castellanos, A. A., Musher, L. J., & Voelker, G. (2019). Underestimated and cryptic diversification patterns across Afro-tropical lowland forests. Journal of Biogeography, 46(2), 381–391. https://doi.org/10.1111/jbi.13505
Irwin, D. E. (2018). Sex chromosomes and speciation in birds and other ZW systems. Molecular Ecology, 27(19), 3831–3851. https://doi.org/10.1111/mec.14537
Irwin, D. E., Alström, P., Olsson, U., & Benowitz-Fredericks, Z. m. (2001). Cryptic species in the genus Phylloscopus (Old World leaf warblers). Ibis, 143(2), 233–247. https://doi.org/10.1111/j.1474-919X.2001.tb04479.x
Isler, M. L., Isler, P. R., & Whitney, B. M. (2007). Species Limits in Antbirds (Thamnophilidae): The Warbling Antbird (Hypocnemis Cantator) Complex. The Auk, 124(1), 11–28. https://doi.org/10.1093/auk/124.1.11
J. Hijmans, R., Barbosa, M., Ghosh, A., & Mandel, A. (2023). Geodata [Computer software].
Johns, G. C., & Avise, J. C. (1998). A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution, 15(11), 1481–1490. https://doi.org/10.1093/oxfordjournals.molbev.a025875
Jörger, K. M., & Schrödl, M. (2013). How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology, 10(1), 59. https://doi.org/10.1186/1742-9994-10-59
Kang, H., Zhao, D., Xiang, H., Li, J., Zhao, G., & Li, H. (2021). Large-scale transcriptome sequencing in broiler chickens to identify candidate genes for breast muscle weight and intramuscular fat content. Genetics Selection Evolution, 53(1), 66. https://doi.org/10.1186/s12711-021-00656-9
Kato, M., & Okanoya, K. (2010). Molecular characterization of the song control nucleus HVC in Bengalese finch brain. Brain Research, 1360, 56–76. https://doi.org/10.1016/j.brainres.2010.09.014
Kearney, M. R., Wintle, B. A., & Porter, W. P. (2010). Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters, 3(3), 203–213. https://doi.org/10.1111/j.1755-263X.2010.00097.x
Kenney, M. C., Chwa, M., Atilano, S. R., Pavlis, J. M., Falatoonzadeh, P., Ramirez, C., Malik, D., Hsu, T., Woo, G., Soe, K., Nesburn, A. B., Boyer, D. S., Kuppermann, B. D., Jazwinski, S. M., Miceli, M. V., Wallace, D. C., & Udar, N. (2013). Mitochondrial DNA Variants Mediate Energy Production and Expression Levels for CFH, C3 and EFEMP1 Genes: Implications for Age-Related Macular Degeneration. PLOS ONE, 8(1), e54339. https://doi.org/10.1371/journal.pone.0054339
Kheravii, S. K., Swick, R. A., Choct, M., & Wu, S.-B. (2018). Upregulation of genes encoding digestive enzymes and nutrient transporters in the digestive system of broiler chickens by dietary supplementation of fiber and inclusion of coarse particle size corn. BMC Genomics, 19(1), 208. https://doi.org/10.1186/s12864-018-4592-2
Kiełbasa, S. M., Wan, R., Sato, K., Horton, P., & Frith, M. C. (2011). Adaptive seeds tame genomic sequence comparison. Genome Research, 21(3), 487–493. https://doi.org/10.1101/gr.113985.110
Kimball, R. T., Hosner, P. A., & Braun, E. L. (2021). A phylogenomic supermatrix of Galliformes (Landfowl) reveals biased branch lengths. Molecular Phylogenetics and Evolution, 158, 107091. https://doi.org/10.1016/j.ympev.2021.107091
Kimball, R. T., & Ligon, J. D. (1999). Evolution of Avian Plumage Dichromatism from a Proximate Perspective. The American Naturalist, 154(2), 182–193. https://doi.org/10.1086/303228
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581
Knowlton N. (1993). Sibling Species in the Sea. Annual Review of Ecology, Evolution, and Systematics, 24(Volume 24, 1993), 189–216. https://doi.org/10.1146/annurev.es.24.110193.001201
Kozak, K. H., & Wiens, JohnJ. (2006). Does Niche Conservatism Promote Speciation? A Case Study in North American Salamanders. Evolution, 60(12), 2604–2621. https://doi.org/10.1111/j.0014-3820.2006.tb01893.x
Krug, P. J., Vendetti, J. E., Rodriguez, A. K., Retana, J. N., Hirano, Y. M., & Trowbridge, C. D. (2013). Integrative species delimitation in photosynthetic sea slugs reveals twenty candidate species in three nominal taxa studied for drug discovery, plastid symbiosis or biological control. Molecular Phylogenetics and Evolution, 69(3), 1101–1119. https://doi.org/10.1016/j.ympev.2013.07.009
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Kwan, V., Rosa, E., Xing, S., Murtaza, N., Singh, K., Holzapfel, N. T., Berg, T., Lu, Y., & Singh, K. K. (2021). Proteomic Analysis Reveals Autism-Associated Gene DIXDC1 Regulates Proteins Associated with Mitochondrial Organization and Function. Journal of Proteome Research, 20(1), 1052–1062. https://doi.org/10.1021/acs.jproteome.0c00896
Lamoreux, M. L., Zhou, B.-K., Rosemblat, S., & Orlow, S. J. (1995). The Pinkeyed-Dilution Protein and the Eumelanin/Pheomelanin Switch: In Support of a Unifying Hypothesis. Pigment Cell Research, 8(5), 263–270. https://doi.org/10.1111/j.1600-0749.1995.tb00673.x
Lara, A., PONCE de LEÓN, J. L., Rodríguez, R., Casane, D., Côté, G., Bernatchez, L., & García-Machado, E. (2010). DNA barcoding of Cuban freshwater fishes: Evidence for cryptic species and taxonomic conflicts. Molecular Ecology Resources, 10(3), 421–430. https://doi.org/10.1111/j.1755-0998.2009.02785.x
Lawal, R. A., Arora, U. P., & Dumont, B. L. (2021). Selection shapes the landscape of functional variation in wild house mice. BMC Biology, 19(1), 239. https://doi.org/10.1186/s12915-021-01165-3
Leaché, A. D., & Fujita, M. K. (2010). Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proceedings of the Royal Society B: Biological Sciences, 277(1697), 3071–3077. https://doi.org/10.1098/rspb.2010.0662
Leyfer, D., & Fetterman, J. L. (2023). Beyond MitoCarta—Expanding the list of candidate proteins involved in mitochondrial functions using a biological network approach. NAR Genomics and Bioinformatics, 5(4), lqad107. https://doi.org/10.1093/nargab/lqad107
Li, D., Sun, G., Zhang, M., Cao, Y., Zhang, C., Fu, Y., Li, F., Li, G., Jiang, R., Han, R., Li, Z., Wang, Y., Tian, Y., Liu, X., Li, W., & Kang, X. (2020). Breeding history and candidate genes responsible for black skin of Xichuan black-bone chicken. BMC Genomics, 21(1), 511. https://doi.org/10.1186/s12864-020-06900-8
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM (arXiv:1303.3997). arXiv. https://doi.org/10.48550/arXiv.1303.3997
Li, J., Bed’hom, B., Marthey, S., Valade, M., Dureux, A., Moroldo, M., Péchoux, C., Coville, J.-L., Gourichon, D., Vieaud, A., Dorshorst, B., Andersson, L., & Tixier-Boichard, M. (2019). A missense mutation in TYRP1 causes the chocolate plumage color in chicken and alters melanosome structure. Pigment Cell & Melanoma Research, 32(3), 381–390. https://doi.org/10.1111/pcmr.12753
Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158
Ligon, J. D., Thornhill, R., Zuk, M., & Johnson, K. (1990). Male-male competition, ornamentation and the role of testosterone in sexual selection in red jungle fowl. Animal Behaviour, 40(2), 367–373. https://doi.org/10.1016/S0003-3472(05)80932-7
Liu, F., Zhao, W., Pan, Y., & Wen, L. (2020). Continental island effect in Sichuan Basin based on the genetic structure of sparrow. https://doi.org/10.1163/15707563-bja10007
Liu, H., Yang, Z., He, Y., Yang, Q., Tang, Q., Yang, Z., Qi, J., Hu, Q., Bai, L., & Li, L. (2022). Metabolic Profiling Reveals That the Olfactory Cues in the Duck Uropygial Gland Potentially Act as Sex Pheromones. Animals, 12(4), Article 4. https://doi.org/10.3390/ani12040413
Liu, Z., Chen, G., Zhu, T., Zeng, Z., Lyu, Z., Wang, J., Messenger, K., Greenberg, A. J., Guo, Z., Yang, Z., Shi, S., & Wang, Y. (2018). Prevalence of cryptic species in morphologically uniform taxa – Fast speciation and evolutionary radiation in Asian frogs. Molecular Phylogenetics and Evolution, 127, 723–731. https://doi.org/10.1016/j.ympev.2018.06.020
Lovell, P. V., Clayton, D. F., Replogle, K. L., & Mello, C. V. (2008). Birdsong “Transcriptomics”: Neurochemical Specializations of the Oscine Song System. PLOS ONE, 3(10), e3440. https://doi.org/10.1371/journal.pone.0003440
Mackay, T. F. C., Richards, S., Stone, E. A., Barbadilla, A., Ayroles, J. F., Zhu, D., Casillas, S., Han, Y., Magwire, M. M., Cridland, J. M., Richardson, M. F., Anholt, R. R. H., Barrón, M., Bess, C., Blankenburg, K. P., Carbone, M. A., Castellano, D., Chaboub, L., Duncan, L., … Gibbs, R. A. (2012). The Drosophila melanogaster Genetic Reference Panel. Nature, 482(7384), 173–178. https://doi.org/10.1038/nature10811
Mah, L. W., Chan, Y. Y., & Yang, J. H. (2017). Chapter 3—Gender Identity in Disorders of Sex Development. In M. J. Legato (Ed.), Principles of Gender-Specific Medicine (Third Edition) (pp. 27–43). Academic Press. https://doi.org/10.1016/B978-0-12-803506-1.00012-7
Maher, K., Kokelj, B. J., Butinar, M., Mikhaylov, G., Manček-Keber, M., Stoka, V., Vasiljeva, O., Turk, B., Grigoryev, S. A., & Kopitar-Jerala, N. (2014). A Role for Stefin B (Cystatin B) in Inflammation and Endotoxemia *. Journal of Biological Chemistry, 289(46), 31736–31750. https://doi.org/10.1074/jbc.M114.609396
Mai, N., Chrzanowska-Lightowlers, Z. M. A., & Lightowlers, R. N. (2017). The process of mammalian mitochondrial protein synthesis. Cell and Tissue Research, 367(1), 5–20. https://doi.org/10.1007/s00441-016-2456-0
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular Biology and Evolution, 38(10), 4647–4654. https://doi.org/10.1093/molbev/msab199
Manthey, J. D., Klicka, J., & Spellman, G. M. (2011). Cryptic diversity in a widespread North American songbird: Phylogeography of the Brown Creeper (Certhia americana). Molecular Phylogenetics and Evolution, 58(3), 502–512. https://doi.org/10.1016/j.ympev.2010.12.003
Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin, A. (2018). MUMmer4: A fast and versatile genome alignment system. PLOS Computational Biology, 14(1), e1005944. https://doi.org/10.1371/journal.pcbi.1005944
Martín-Vivaldi, M., Peña, A., Peralta-Sánchez, J. M., Sánchez, L., Ananou, S., Ruiz-Rodríguez, M., & Soler, J. J. (2009). Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proceedings of the Royal Society B: Biological Sciences, 277(1678), 123–130. https://doi.org/10.1098/rspb.2009.1377
Masly, J. P., & Presgraves, D. C. (2007). High-Resolution Genome-Wide Dissection of the Two Rules of Speciation in Drosophila. PLOS Biology, 5(9), e243. https://doi.org/10.1371/journal.pbio.0050243
Mayr, E. (1942). Systematics and origin of species. Columbia University Press.
McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351(6328), 652–654. https://doi.org/10.1038/351652a0
McGowan, P. J. K., Kirwan, G. M., & Christie, D. (2020). Chinese bamboo partridge (Bambusicola thoracicus), version 1.0. Birds of the World. https://doi.org/10.2173/bow.chbpar3.01species_shared.bow.project_name
Meier, J. I., Sousa, V. C., Marques, D. A., Selz, O. M., Wagner, C. E., Excoffier, L., & Seehausen, O. (2017). Demographic modelling with whole-genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization. Molecular Ecology, 26(1), 123–141. https://doi.org/10.1111/mec.13838
Mendive, F., Laurent, P., Van Schoore, G., Skarnes, W., Pochet, R., & Vassart, G. (2006). Defective postnatal development of the male reproductive tract in LGR4 knockout mice. Developmental Biology, 290(2), 421–434. https://doi.org/10.1016/j.ydbio.2005.11.043
Menezes, M. J., Guo, Y., Zhang, J., Riley, L. G., Cooper, S. T., Thorburn, D. R., Li, J., Dong, D., Li, Z., Glessner, J., Davis, R. L., Sue, C. M., Alexander, S. I., Arbuckle, S., Kirwan, P., Keating, B. J., Xu, X., Hakonarson, H., & Christodoulou, J. (2015). Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia. Human Molecular Genetics, 24(8), 2297–2307. https://doi.org/10.1093/hmg/ddu747
Mercati, O., Huguet, G., Danckaert, A., André-Leroux, G., Maruani, A., Bellinzoni, M., Rolland, T., Gouder, L., Mathieu, A., Buratti, J., Amsellem, F., Benabou, M., Van-Gils, J., Beggiato, A., Konyukh, M., Bourgeois, J.-P., Gazzellone, M. J., Yuen, R. K. C., Walker, S., … Bourgeron, T. (2017). CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders. Molecular Psychiatry, 22(4), 625–633. https://doi.org/10.1038/mp.2016.61
Merilaita, S., & Lind, J. (2005). Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proceedings of the Royal Society B: Biological Sciences, 272(1563), 665–670. https://doi.org/10.1098/rspb.2004.3000
Mindnich, R., Haller, F., Halbach, F., Moeller, G., Hrabé de Angelis, M., & Adamski, J. (2005). Androgen metabolism via 17beta-hydroxysteroid dehydrogenase type 3 in mammalian and non-mammalian vertebrates: Comparison of the human and the zebrafish enzyme. Journal of Molecular Endocrinology, 35(2), 305–316. https://doi.org/10.1677/jme.1.01853
Mishmar, D., Ruiz-Pesini, E., Golik, P., Macaulay, V., Clark, A. G., Hosseini, S., Brandon, M., Easley, K., Chen, E., Brown, M. D., Sukernik, R. I., Olckers, A., & Wallace, D. C. (2003). Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Sciences, 100(1), 171–176. https://doi.org/10.1073/pnas.0136972100
Moore, R. C., Lee, T., & Theunissen, F. E. (2013). Noise-invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise. PLOS Computational Biology, 9(3), e1002942. https://doi.org/10.1371/journal.pcbi.1002942
Muller, H. J. (1942). Isolating mechanisms, evolution and temperature. In Biological Symposia: A Series of Volumes Devoted to Current Symposia in the Field of Biology (ed. T Dobzhansky) (Vol. 6, pp. 71–125). Jaques Cattell Press.
Murphy, S. A., Joseph, L., Burbidge, A. H., & Austin, J. (2011). A cryptic and critically endangered species revealed by mitochondrial DNA analyses: The Western Ground Parrot. Conservation Genetics, 12(2), 595–600. https://doi.org/10.1007/s10592-010-0161-1
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501
Nadeau, N. J., Mundy, N. I., Gourichon, D., & Minvielle, F. (2007). Association of a single-nucleotide substitution in TYRP1 with roux in Japanese quail (Coturnix japonica). Animal Genetics, 38(6), 609–613. https://doi.org/10.1111/j.1365-2052.2007.01667.x
Nam, K., Mugal, C., Nabholz, B., Schielzeth, H., Wolf, J. B., Backström, N., Künstner, A., Balakrishnan, C. N., Heger, A., Ponting, C. P., Clayton, D. F., & Ellegren, H. (2010). Molecular evolution of genes in avian genomes. Genome Biology, 11(6), R68. https://doi.org/10.1186/gb-2010-11-6-r68
Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press. https://doi.org/10.7312/nei-92038
Nikelski, E., Rubtsov, A. S., & Irwin, D. (2023). High heterogeneity in genomic differentiation between phenotypically divergent songbirds: A test of mitonuclear co-introgression. Heredity, 130(1), Article 1. https://doi.org/10.1038/s41437-022-00580-8
Niknafs, S., Navarro, M., Schneider, E. R., & Roura, E. (2023). The avian taste system. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1235377
Niknafs, S., & Roura, E. (2018). Nutrient sensing, taste and feed intake in avian species. Nutrition Research Reviews, 31(2), 256–266. https://doi.org/10.1017/S0954422418000100
Nottebohm, F. (2005). The Neural Basis of Birdsong. PLOS Biology, 3(5), e164. https://doi.org/10.1371/journal.pbio.0030164
Nygren, A. (2014). Cryptic polychaete diversity: A review. Zoologica Scripta, 43(2), 172–183. https://doi.org/10.1111/zsc.12044
Ogawa, J., Lee, S., Itoh, K., Nagata, S., Machida, T., Takeda, Y., & Watanabe, K. (2001). Neural recognition molecule NB-2 of the contactin/F3 subgroup in rat: Specificity in neurite outgrowth-promoting activity and restricted expression in the brain regions. Journal of Neuroscience Research, 65(2), 100–110. https://doi.org/10.1002/jnr.1133
Orr, H. A. (1987). Genetics of Male and Female Sterility in Hybrids of Drosophila pseudoobscura and D. persimilis. Genetics, 116(4), 555–563. https://doi.org/10.1093/genetics/116.4.555
Orr, H. A. (1996). Dobzhansky, Bateson, and the Genetics of Speciation. Genetics, 144(4), 1331–1335. https://doi.org/10.1093/genetics/144.4.1331
Ortiz, E. M. (2019). vcf2phylip v2.0: Convert a VCF matrix into several matrix formats for phylogenetic analysis. (Version v2.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.2540861
Ortiz-Barrientos, D., Engelstädter, J., & Rieseberg, L. H. (2016). Recombination Rate Evolution and the Origin of Species. Trends in Ecology & Evolution, 31(3), 226–236. https://doi.org/10.1016/j.tree.2015.12.016
Osada, N., & Akashi, H. (2012). Mitochondrial–Nuclear Interactions and Accelerated Compensatory Evolution: Evidence from the Primate Cytochrome c Oxidase Complex. Molecular Biology and Evolution, 29(1), 337–346. https://doi.org/10.1093/molbev/msr211
Panaitof, S. C., Abrahams, B. S., Dong, H., Geschwind, D. H., & White, S. A. (2010). Language-related Cntnap2 gene is differentially expressed in sexually dimorphic song nuclei essential for vocal learning in songbirds. Journal of Comparative Neurology, 518(11), 1995–2018. https://doi.org/10.1002/cne.22318
Pante, E., Puillandre, N., Viricel, A., Arnaud-Haond, S., Aurelle, D., Castelin, M., Chenuil, A., Destombe, C., Forcioli, D., Valero, M., Viard, F., & Samadi, S. (2015). Species are hypotheses: Avoid connectivity assessments based on pillars of sand. Molecular Ecology, 24(3), 525–544. https://doi.org/10.1111/mec.13048
Park, J., Li, Y., Kong, G., Mun, K., Lee, H., Kim, D., Tran, Q., Wang, M., Peng, B., Hong, Y., Hur, G. M., & Park, J. (2016). Abstract 219: PHF20 induced necrotic like cell death mediated by ROS via enhanced mitochondrial biogenesis. Cancer Research, 76(14_Supplement), 219. https://doi.org/10.1158/1538-7445.AM2016-219
Pérez-Ponce de León, G., & Poulin, R. (2016). Taxonomic distribution of cryptic diversity among metazoans: Not so homogeneous after all. Biology Letters, 12(8), 20160371. https://doi.org/10.1098/rsbl.2016.0371
Persson, E., & Sonnhammer, E. L. L. (2022). InParanoid-DIAMOND: Faster orthology analysis with the InParanoid algorithm. Bioinformatics, 38(10), 2918–2919. https://doi.org/10.1093/bioinformatics/btac194
Pfenninger, M., & Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology, 7(1), 121. https://doi.org/10.1186/1471-2148-7-121
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38(8), 904–909. https://doi.org/10.1038/ng1847
Price, T. D. (2010). The roles of time and ecology in the continental radiation of the Old World leaf warblers (Phylloscopus and Seicercus). Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1547), 1749–1762. https://doi.org/10.1098/rstb.2009.0269
Price-Waldman, R. M., Shultz, A. J., & Burns, K. J. (2020). Speciation rates are correlated with changes in plumage color complexity in the largest family of songbirds. Evolution, 74(6), 1155–1169. https://doi.org/10.1111/evo.13982
Pulido-Santacruz, P., Aleixo, A., & Weir, J. T. (2018). Morphologically cryptic Amazonian bird species pairs exhibit strong postzygotic reproductive isolation. Proceedings of the Royal Society B: Biological Sciences, 285(1874), 20172081. https://doi.org/10.1098/rspb.2017.2081
Purcell, S., & Chang, C. (n.d.). PLINK 1.9 [Computer software]. www.cog-genomics.org/plink/1.9/
Qian, Y., Liu, S., Guan, Y., Pan, H., Guan, X., Qiu, Z., Li, L., Gao, N., Zhao, Y., Li, X., Lu, Y., Liu, M., & Li, D. (2013). Lgr4-mediated Wnt/β-catenin signaling in peritubular myoid cells is essential for spermatogenesis. Development, 140(8), 1751–1761. https://doi.org/10.1242/dev.093641
Qiu, Y.-X., Guan, B.-C., Fu, C.-X., & Comes, H. P. (2009). Did glacials and/or interglacials promote allopatric incipient speciation in East Asian temperate plants? Phylogeographic and coalescent analyses on refugial isolation and divergence in Dysosma versipellis. Molecular Phylogenetics and Evolution, 51(2), 281–293. https://doi.org/10.1016/j.ympev.2009.01.016
Qvarnström, A., & Bailey, R. I. (2009). Speciation through evolution of sex-linked genes. Heredity, 102(1), 4–15. https://doi.org/10.1038/hdy.2008.93
Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G., & Toucanne, S. (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews, 111, 94–106. https://doi.org/10.1016/j.quascirev.2015.01.012
Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N., & Delsuc, F. (2018). MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Molecular Biology and Evolution, 35(10), 2582–2584. https://doi.org/10.1093/molbev/msy159
Rath, S., Sharma, R., Gupta, R., Ast, T., Chan, C., Durham, T. J., Goodman, R. P., Grabarek, Z., Haas, M. E., Hung, W. H. W., Joshi, P. R., Jourdain, A. A., Kim, S. H., Kotrys, A. V., Lam, S. S., McCoy, J. G., Meisel, J. D., Miranda, M., Panda, A., … Mootha, V. K. (2021). MitoCarta3.0: An updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Research, 49(D1), D1541–D1547. https://doi.org/10.1093/nar/gkaa1011
Ravinet, M., Elgvin, T. O., Trier, C., Aliabadian, M., Gavrilov, A., & Sætre, G.-P. (2018). Signatures of human-commensalism in the house sparrow genome. Proceedings of the Royal Society B: Biological Sciences, 285(1884), 20181246. https://doi.org/10.1098/rspb.2018.1246
Raxworthy, C. J., Ingram, C. M., Rabibisoa, N., & Pearson, R. G. (2007). Applications of Ecological Niche Modeling for Species Delimitation: A Review and Empirical Evaluation Using Day Geckos (Phelsuma) from Madagascar. Systematic Biology, 56(6), 907–923. https://doi.org/10.1080/10635150701775111
Reidenbach, K. R., Neafsey, D. E., Costantini, C., Sagnon, N., Simard, F., Ragland, G. J., Egan, S. P., Feder, J. L., Muskavitch, M. A. T., & Besansky, N. J. (2012). Patterns of Genomic Differentiation between Ecologically Differentiated M and S Forms of Anopheles gambiae in West and Central Africa. Genome Biology and Evolution, 4(12), 1202–1212. https://doi.org/10.1093/gbe/evs095
Reif, W.-E. (2008). Darwin’s model of speciation in his unpublished notebooks and texts. Neues Jahrbuch Für Geologie Und Paläontologie - Abhandlungen, 45–78. https://doi.org/10.1127/0077-7749/2008/0248-0045
Rheindt, F. E., Cuervo, A. M., & Brumfield, R. T. (2013). Rampant polyphyly indicates cryptic diversity in a clade of Neotropical flycatchers (Aves: Tyrannidae). Biological Journal of the Linnean Society, 108(4), 889–900. https://doi.org/10.1111/j.1095-8312.2012.02036.x
Rudler, D. L., Hughes, L. A., Perks, K. L., Richman, T. R., Kuznetsova, I., Ermer, J. A., Abudulai, L. N., Shearwood, A.-M. J., Viola, H. M., Hool, L. C., Siira, S. J., Rackham, O., & Filipovska, A. (2019). Fidelity of translation initiation is required for coordinated respiratory complex assembly. Science Advances, 5(12), eaay2118. https://doi.org/10.1126/sciadv.aay2118
Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V., & Wallace, D. C. (2004). Effects of Purifying and Adaptive Selection on Regional Variation in Human mtDNA. Science, 303(5655), 223–226. https://doi.org/10.1126/science.1088434
Saitoh, T., Sugita, N., Someya, S., Iwami, Y., Kobayashi, S., Kamigaichi, H., Higuchi, A., Asai, S., Yamamoto, Y., & Nishiumi, I. (2015). DNA barcoding reveals 24 distinct lineages as cryptic bird species candidates in and around the Japanese Archipelago. Molecular Ecology Resources, 15(1), 177–186. https://doi.org/10.1111/1755-0998.12282
Scheffers, B. R., Joppa, L. N., Pimm, S. L., & Laurance, W. F. (2012). What we know and don’t know about Earth’s missing biodiversity. Trends in Ecology & Evolution, 27(9), 501–510. https://doi.org/10.1016/j.tree.2012.05.008
SCHÖNROGGE, K., BARR, B., WARDLAW, J. C., NAPPER, E., GARDNER, M. G., BREEN, J., ELMES, G. W., & THOMAS, J. A. (2002). When rare species become endangered: Cryptic speciation in myrmecophilous hoverflies. Biological Journal of the Linnean Society, 75(3), 291–300. https://doi.org/10.1046/j.1095-8312.2002.00019.x
Scott, G. R., Schulte, P. M., Egginton, S., Scott, A. L. M., Richards, J. G., & Milsom, W. K. (2011). Molecular Evolution of Cytochrome c Oxidase Underlies High-Altitude Adaptation in the Bar-Headed Goose. Molecular Biology and Evolution, 28(1), 351–363. https://doi.org/10.1093/molbev/msq205
Seppey, M., Manni, M., & Zdobnov, E. M. (2019). BUSCO: Assessing Genome Assembly and Annotation Completeness. Methods in Molecular Biology (Clifton, N.J.), 1962, 227–245. https://doi.org/10.1007/978-1-4939-9173-0_14
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351
Simpson, G. G. (1951). The Species Concept. Evolution, 5(4), 285–298. https://doi.org/10.2307/2405675
Singh, A., Gupta, S. K., Alström, P., Mohan, D., Hooper, D. M., Kumar, R. S., Bhatt, D., Singh, P., & Price, T. D. (2020). Taxonomy of cryptic species in the Cyornis rubeculoides complex in the Indian subcontinent. Ibis, 162(3), 924–935. https://doi.org/10.1111/ibi.12735
Smit, A., Hubley, R., & Green, P. (2013). RepeatMasker Open-4.0. [Computer software]. http://www.repeatmasker.org
Smith, K. L., Harmon, L. J., Shoo, L. P., & Melville, J. (2011). EVIDENCE OF CONSTRAINED PHENOTYPIC EVOLUTION IN A CRYPTIC SPECIES COMPLEX OF AGAMID LIZARDS. Evolution, 65(4), 976–992. https://doi.org/10.1111/j.1558-5646.2010.01211.x
Smith, N. G. C., & Eyre-Walker, A. (2002). Adaptive protein evolution in Drosophila. Nature, 415(6875), 1022–1024. https://doi.org/10.1038/4151022a
Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A., Dagdigian, C., Fuellen, G., Gilbert, J. G. R., Korf, I., Lapp, H., Lehväslaiho, H., Matsalla, C., Mungall, C. J., Osborne, B. I., Pocock, M. R., Schattner, P., Senger, M., Stein, L. D., Stupka, E., … Birney, E. (2002). The Bioperl toolkit: Perl modules for the life sciences. Genome Research, 12(10), 1611–1618. https://doi.org/10.1101/gr.361602
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Stanke, M., Diekhans, M., Baertsch, R., & Haussler, D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24(5), 637–644. https://doi.org/10.1093/bioinformatics/btn013
Storer, J., Hubley, R., Rosen, J., Wheeler, T. J., & Smit, A. F. (2021). The Dfam community resource of transposable element families, sequence models, and genome annotations. Mobile DNA, 12(1), 2. https://doi.org/10.1186/s13100-020-00230-y
Stork, N. E. (2018). How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? Annual Review of Entomology, 63(Volume 63, 2018), 31–45. https://doi.org/10.1146/annurev-ento-020117-043348
Struck, T. H., & Cerca, J. (2019). Cryptic Species and Their Evolutionary Significance. In eLS (pp. 1–9). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0028292
Struck, T. H., Feder, J. L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V. I., Kistenich, S., Larsson, K.-H., Liow, L. H., Nowak, M. D., Stedje, B., Bachmann, L., & Dimitrov, D. (2018). Finding Evolutionary Processes Hidden in Cryptic Species. Trends in Ecology & Evolution, 33(3), 153–163. https://doi.org/10.1016/j.tree.2017.11.007
Sunnucks, P., Morales, H. E., Lamb, A. M., Pavlova, A., & Greening, C. (2017). Integrative Approaches for Studying Mitochondrial and Nuclear Genome Co-evolution in Oxidative Phosphorylation. Frontiers in Genetics, 8. https://doi.org/10.3389/fgene.2017.00025
Taylor, R. S., Bolton, M., Beard, A., Birt, T., Deane-Coe, P., Raine, A. F., González-Solís, J., Lougheed, S. C., & Friesen, V. L. (2019). Cryptic species and independent origins of allochronic populations within a seabird species complex (Hydrobates spp.). Molecular Phylogenetics and Evolution, 139, 106552. https://doi.org/10.1016/j.ympev.2019.106552
Terrill, R. S., & Shultz, A. J. (2023). Feather function and the evolution of birds. Biological Reviews, 98(2), 540–566. https://doi.org/10.1111/brv.12918
Thayer, G. H. (1918). Concealing-coloration in the Animal Kingdom: An Exposition of the Laws of Disguise Through Color and Pattern. Macmillan Company.
The UniProt Consortium. (2023). UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Research, 51(D1), D523–D531. https://doi.org/10.1093/nar/gkac1052
Tian, S., Xu, J., Li, J., Zhang, Z., & Wang, Y. (2018). Research advances of Galliformes since 1990 and future prospects. Avian Research, 9(1), 32. https://doi.org/10.1186/s40657-018-0124-7
Tieleman, B. I., Williams, J. B., & Bloomer, P. (2003). Adaptation of metabolism and evaporative water loss along an aridity gradient. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1511), 207–214. https://doi.org/10.1098/rspb.2002.2205
Toews, D. P. L., & Irwin, D. E. (2008). Cryptic speciation in a Holarctic passerine revealed by genetic and bioacoustic analyses. Molecular Ecology, 17(11), 2691–2705. https://doi.org/10.1111/j.1365-294X.2008.03769.x
Toyoshima, M., Sakurai, K., Shimazaki, K., Takeda, Y., Nakamoto, M., Serizawa, S., Shimoda, Y., & Watanabe, K. (2009). Preferential localization of neural cell recognition molecule NB-2 in developing glutamatergic neurons in the rat auditory brainstem. Journal of Comparative Neurology, 513(4), 349–362. https://doi.org/10.1002/cne.21972
Valen, L. V. (1976). Ecological Species, Multispecies, and Oaks. Taxon, 25(2/3), 233–239. https://doi.org/10.2307/1219444
Vrijenhoek, R. C., Schutz, S. J., Gustafson, R. G., & Lutz, R. A. (1994). Cryptic species of deep-sea clams (Mollusca: Bivalvia: Vesicomyidae) from hydrothermal vent and cold-water seep environments. Deep Sea Research Part I: Oceanographic Research Papers, 41(8), 1171–1189. https://doi.org/10.1016/0967-0637(94)90039-6
Wang, F., Zhang, D., Zhang, D., Li, P., & Gao, Y. (2021). Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.675465
Wang, L., Liu, F., Zhao, L., Xu, Y., Zhang, T., & Wen, L. (2023). A test of genetic divergence of a bird existing in the Sichuan Basin and its surrounding mountain ranges. Avian Research, 14, 100144. https://doi.org/10.1016/j.avrs.2023.100144
Wang, N., Kimball, R. T., Braun, E. L., Liang, B., & Zhang, Z. (2013). Assessing Phylogenetic Relationships among Galliformes: A Multigene Phylogeny with Expanded Taxon Sampling in Phasianidae. PLOS ONE, 8(5), e64312. https://doi.org/10.1371/journal.pone.0064312
Wang, P., Yeh, C., Chang, J., Yao, H., Fu, Y., Yao, C., Wang, X., Li, S., & Zhang, Z. (2021). Multilocus phylogeography and ecological niche modeling suggest speciation with gene flow between the two Bamboo Partridges. Avian Research, 12(1), 17. https://doi.org/10.1186/s40657-021-00252-x
Wang, Z.-M., Meng, S.-Y., & Rao, G.-Y. (2022). Two species of the Rhodiola yunnanensis species complex distributed around the Sichuan Basin of China: Speciation in a ring? Journal of Systematics and Evolution, 60(5), 1092–1108. https://doi.org/10.1111/jse.12754
Weathers, W. W. (1979). Climatic adaptation in Svian standard metabolic rate. Oecologia, 42(1), 81–89. https://doi.org/10.1007/BF00347620
Wei, C., Sangster, G., Olsson, U., Rasmussen, P. C., Svensson, L., Yao, C., Carey, G. J., Leader, P. J., Zhang, R., Chen, G., Song, G., Lei, F., Wilcove, D. S., Alström, P., & Liu, Y. (2022). Cryptic species in a colorful genus: Integrative taxonomy of the bush robins (Aves, Muscicapidae, Tarsiger) suggests two overlooked species. Molecular Phylogenetics and Evolution, 175, 107580. https://doi.org/10.1016/j.ympev.2022.107580
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358–1370. https://doi.org/10.2307/2408641
Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M., & Jaffe, D. B. (2017). Direct determination of diploid genome sequences. Genome Research, 27(5), 757–767. https://doi.org/10.1101/gr.214874.116
Whitaker, D. T. (2012). Differential Gene Expression in the Anterior Forebrain Pathway Nucleus Area X During Rapid Vocal Learning [Thesis]. https://oaktrust.library.tamu.edu/handle/1969.1/148750
Whittaker, D. J., & Hagelin, J. C. (2021). Female-Based Patterns and Social Function in Avian Chemical Communication. Journal of Chemical Ecology, 47(1), 43–62. https://doi.org/10.1007/s10886-020-01230-1
Wiley, E. O. (1981). Remarks on Willis’ Species Concept. Systematic Biology, 30(1), 86–87. https://doi.org/10.1093/sysbio/30.1.86
Winger, B. M., & Bates, J. M. (2015). The tempo of trait divergence in geographic isolation: Avian speciation across the Marañon Valley of Peru. Evolution, 69(3), 772–787. https://doi.org/10.1111/evo.12607
Wolf, J. B. W., & Ellegren, H. (2017). Making sense of genomic islands of differentiation in light of speciation. Nature Reviews Genetics, 18(2), Article 2. https://doi.org/10.1038/nrg.2016.133
Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0
Wood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biology, 15(3), R46. https://doi.org/10.1186/gb-2014-15-3-r46
Woolley, S. M. N., Gill, P. R., Fremouw, T., & Theunissen, F. E. (2009). Functional Groups in the Avian Auditory System. Journal of Neuroscience, 29(9), 2780–2793. https://doi.org/10.1523/JNEUROSCI.2042-08.2009
Xi, Y., Liu, H., Li, L., Xu, Q., Liu, Y., Wang, L., Ma, S., Wang, J., Bai, L., Zhang, R., & Han, C. (2020). Transcriptome Reveals Multi Pigmentation Genes Affecting Dorsoventral Pattern in Avian Body. Frontiers in Cell and Developmental Biology, 8. https://doi.org/10.3389/fcell.2020.560766
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88(1), 76–82. https://doi.org/10.1016/j.ajhg.2010.11.011
Yang, Y., Li, X., Ye, S., Chen, X., Wang, L., Qian, Y., Xin, Q., Li, L., & Gong, P. (2022). Identification of genes related to sexual differentiation and sterility in embryonic gonads of Mule ducks by transcriptome analysis. Frontiers in Genetics, 13. https://doi.org/10.3389/fgene.2022.1037810
Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088
Żak, M., van Oort, T., Hendriksen, F. G., Garcia, M.-I., Vassart, G., & Grolman, W. (2016). LGR4 and LGR5 Regulate Hair Cell Differentiation in the Sensory Epithelium of the Developing Mouse Cochlea. Frontiers in Cellular Neuroscience, 10. https://doi.org/10.3389/fncel.2016.00186
Zhang, C., Dong, S.-S., Xu, J.-Y., He, W.-M., & Yang, T.-L. (2019). PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 35(10), 1786–1788. https://doi.org/10.1093/bioinformatics/bty875
Zhang, W., Zhou, M., Lu, W., Gong, J., Gao, F., Li, Y., Xu, X., Lin, Y., Zhang, X., Ding, L., Zhang, Z., Li, G., Chen, X., Sun, X., Zhu, X., Xu, P., & Zhang, Y. (2020). CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics, 10(7), 3000–3021. https://doi.org/10.7150/thno.40798
Zhang, Z., Zhong, H., Lin, S., Liang, L., Ye, S., Xu, Z., Ji, C., Zhang, Z., Zhang, D., & Zhang, X. (2021). Polymorphisms of AMY1A gene and their association with growth, carcass traits and feed intake efficiency in chickens. Genomics, 113(2), 583–594. https://doi.org/10.1016/j.ygeno.2020.10.041
Zheng, G. X. Y., Lau, B. T., Schnall-Levin, M., Jarosz, M., Bell, J. M., Hindson, C. M., Kyriazopoulou-Panagiotopoulou, S., Masquelier, D. A., Merrill, L., Terry, J. M., Mudivarti, P. A., Wyatt, P. W., Bharadwaj, R., Makarewicz, A. J., Li, Y., Belgrader, P., Price, A. D., Lowe, A. J., Marks, P., … Ji, H. P. (2016). Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nature Biotechnology, 34(3), 303–311. https://doi.org/10.1038/nbt.3432