研究生: |
陳俊翰 Chen, Jun-Han |
---|---|
論文名稱: |
鼬獾(Melogale moschata)在野生動物傳染性疾病監測上所能扮演之角色: 以都市保護區為例 The role of Chinese ferret badger (Melogale moschata) in monitoring wildlife infectious diseases: A case study of an urban protected area |
指導教授: |
李佩珍
Lee, Pei-Jen Shaner |
口試委員: |
李佩珍
Lee, Pei-Jen Shaner 顏士清 Yen, Shih-Ching 余品奐 Yu, Pin-Huan |
口試日期: | 2023/07/24 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 中階掠食性動物 、活動模式 、哨兵物種 、流行病學 、都會型保護區 |
英文關鍵詞: | Meso-carnivore, diel activity, sentinel species, epidemiology, urban protected area |
研究方法: | 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202301731 |
論文種類: | 學術論文 |
相關次數: | 點閱:173 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳染病監測是野生動物管理上很重要的一部分。野生動物的時空活動模式為監測、評估傳染病動態提供關鍵資訊。若一個物種本身帶有眾多病原、具有廣泛空間分佈、且與其他物種在時間活動上高度重疊,便可能是疾病傳播的有效促進者。本研究以臺灣低海拔地區常見的本土食肉目動物鼬獾(Melogale moschata)做為研究對象,選擇處於大臺北都會區的陽明山國家公園做為樣地,評估鼬獾是否適合作為食肉目動物疾病監測的哨兵物種(sentinel species)。我根據自動照相機的資料,使用物種佔據模型(occupancy modeling)來估計鼬獾的佔用機率(ψ)和被偵測機率(p),並檢測可能影響鼬獾佔用機率的環境共變量(森林覆蓋度、與最近建物距離、與最近道路距離、遊蕩犬活動量、遊蕩貓活動量)。我使用了2020 年至 2023 年的相機紀錄,在47個相機樣點中,檢測到5種食肉目動物與3581筆紀錄。鼬獾為最常被相機記錄到的食肉目物種,其佔用機率也相對較高(0.93, 95%CI = 0.86-1),且與任一環境共變量間沒有顯著關連。在活動時間上,我使用核密度估計(kernel density estimation)進行估算,鼬獾與兩種原生食肉目動物(白鼻心、麝香貓)的重疊度高,特別是在距離道路或建物較近的地點。為了確認鼬獾的寄生蟲感染狀況,從2022年3月至2023年3月期間,我活捉22隻鼬獾並收集其血液、糞便和外寄生蟲樣本。我在鼬獾樣本中檢測到 4 個腸胃道寄生蟲類群,包括3類線蟲(Capillaria spp, Ancylostoma spp, Strongylidae nematode)和1類絛蟲(Taeniid);2類血液寄生蟲(焦蟲Babesia spp, Ehrlichia spp)與2種外寄生蟲(卵形硬蜱Ixodes ovatus, 蟎)。腸胃道寄生蟲的盛行率為0.81(17/21),其他盛行率較高的寄生蟲包括硬蜱(0.5,11/22)與焦蟲(0.6,9/15)。雖然鼬獾的寄生蟲感染狀況與食肉目動物的物種數、活動量與各環境共變量都沒有顯著關係,但陽明山國家公園內的鼬獾具分佈廣泛且活動時間與各食肉目動物重疊高等特性,其所帶之各類寄生蟲很有可能傳染給共域之其他食肉目動物,適合做為此區野生動物傳染病監測之哨兵物種。
The monitoring of infectious diseases is becoming an important component of wildlife management. Spatiotemporal activity patterns of wildlife provide key information for monitoring and evaluating the dynamics of infectious diseases. A species that carries many parasites and pathogens, has a wide spatial distribution, and high overlap in diel activity with conspecifics, is likely to become an effective facilitator of disease transmission. This study focused on the Chinese ferret badger (Melogale moschata), a common native carnivore at lowland region in Taiwan, and evaluated whether they are a suitable sentinel species for carnivore diseases monitoring using Yangmingshan National Park (YMSNP) in the Taipei metropolitan. We used occupancy modeling to estimate occupancy probability (ψ) and detection probability (p) of the ferret badgers based on camera trap data. I tested whether their occupancy was influenced by environmental covariates (forest cover, distance to nearest human settlements, distance to the nearest major road, dog activity index, cat activity index). I used the camera trap data from a previous survey (2020 to 2023), which included 3581 detections of 5 carnivores at 47 camera sites. The ferret badgers dominated the detection records and their occupancy probability (0.93, 95%CI = 0.86-1) was relatively high compared to the other carnivores. Furthermore, the occupancy probability of the ferret badgers was not associated with any of the environmental covariates. I used kernel density estimation to quantify activity overlap among the carnivores. The ferret badgers overlapped in diel activity with the other two native carnivores (masked palm civets, small Indian civets), especially at sites closer to the major roads or human settlements. To confirm the infection status of parasites and pathogens in the Chinese ferret badgers, I live-trapped 22 individuals from March 2022 to March 2023, and collected their blood, fecal and ectoparasite samples. I detected 4 gastrointestinal helminth taxa including 3 nematode (Capillaria spp, Ancylostoma spp, Strongylidae nematode) and 1 cestode (Taeniid); 2 taxa of blood parasites and pathogens (Babesia spp, Ehrlichia spp), and 2 taxa of ectoparasites (ticks Ixodes ovatus, mites). The prevalence of the helminths was 0.81 (17/21). Other parasites with high prevalence included ticks (0.5, 11/22) and Babesia spp (0.6, 9/15). Although the infection status of the ferret badgers was unrelated to carnivore richness, carnivore activity level, or any of the environmental covariates, this study demonstrated that the Chinese ferret badger is: 1) widely distributed in YMSNP across different environmental conditions; 2) highly overlapped in diel activity with other carnivore species; and 3) host to many parasites and pathogens, making it a suitable sentinel species for wildlife disease monitoring in YMSNP.
王錫杰 (2014)。台灣蜱媒病毒監測與蜱種基因庫建立。(報告編號:MOHW103-CDC-C-315–000206)。衛生福利部疾病管制署,臺灣。
杜武俊 (2019)。台灣地區新興蜱媒傳染病與病媒蜱分布調查與風險評估。(報告編號:MOHW108-CDC-C-114–122112)。衛生福利部疾病管制署,臺灣。
余品奐(2021)。109年度陽明山國家公園園區動物疾病風險調查與救傷檢疫期末報告。內政部營建署,臺北,臺灣。
師健民 (2011)。臺灣硬蜱誌。國防醫學院。
張偉廷 (2018)。北臺灣食肉目群聚食性變異研究。國立臺灣師範大學生命科學系碩士論文,臺北,臺灣。
顏士清 (2017)。陽明山國家公園流浪動物族群現況調查成果報告。內政部營建署,臺北,臺灣。
Aguirre, A. A. (2009). Wild canids as sentinels of ecological health: a conservation medicine perspective. Parasites & Vectors, 2(1), 1-8. doi:10.1186/1756-3305-2-S1-S7
Aguirre, A. A., & Tabor, G. M. (2008). Global Factors Driving Emerging Infectious Diseases. Annals of the New York Academy of Sciences, 1149(1), 1–3. https://doi.org/10.1196/annals.1428.052
Akdesir, E., Origgi, F. C., Wimmershoff, J., Frey, J., Frey, C. F., & Ryser-Degiorgis, M.-P. (2018). Causes of mortality and morbidity in free-ranging mustelids in Switzerland: Necropsy data from over 50 years of general health surveillance. BMC Veterinary Research, 14(1), 195. https://doi.org/10.1186/s12917-018-1494-0
Albon, S. D., Stien, A., Irvine, R. J., Langvatn, R., Ropstad, E., & Halvorsen, O. (2002). The role of parasites in the dynamics of a reindeer population. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1500), 1625–1632. https://doi.org/10.1098/rspb.2002.2064
Alzaga, V., Vicente, J., Villanua, D., Acevedo, P., Casas, F., & Gortazar, C. (2008). Body condition and parasite intensity correlates with escape capacity in Iberian hares (Lepus granatensis). Behavioral Ecology and Sociobiology, 62(5), 769–775. https://doi.org/10.1007/s00265-007-0502-3
Andersen, M. L., Bennett, D. E., & Holbrook, J. D. (2021). Burrow webs: Clawing the surface of interactions with burrows excavated by American badgers. Ecology and Evolution, 11(17), 11559–11568. https://doi.org/10.1002/ece3.7962
Beltrán-Beck, B., García, F. J., & Gortázar, C. (2012). Raccoons in Europe: Disease hazards due to the establishment of an invasive species. European Journal of Wildlife Research, 58(1), 5–15. https://doi.org/10.1007/s10344-011-0600-4
Brearley, G., Rhodes, J., Bradley, A., Baxter, G., Seabrook, L., Lunney, D., Liu, Y., & McAlpine, C. (2013). Wildlife disease prevalence in human-modified landscapes: Wildlife disease in human-modified landscapes. Biological Reviews, 88(2), 427–442. https://doi.org/10.1111/brv.12009
Chao, L.-L., Hsieh, C.-K., Ho, T.-Y., & Shih, C.-M. (2019). First zootiological survey of hard ticks (Acari: Ixodidae) infesting dogs in northern Taiwan. Experimental & Applied Acarology, 77(1), 105–115. https://doi.org/10.1007/s10493-018-0328-x
Chao, L.-L., Liu, L.-L., Ho, T.-Y., & Shih, C.-M. (2014). First detection and molecular identification of Borrelia garinii spirochete from Ixodes ovatus tick ectoparasitized on stray cat in Taiwan. PLOS ONE, 9(10), e110599. https://doi.org/10.1371/journal.pone.0110599
Chiou, H.-Y., Yeh, K.-S., Jeng, C.-R., Chang, H.-W., Chang, L.-J., Wu, Y.-H., Chan, F.-T., & Pang, V. F. (2015). Disease surveillance in rescued and road-killed wild-ranging carnivores in Taiwan. Taiwan Veterinary Journal, 41, 73–84. https://doi.org/10.1142/S1682648515500067
Cleaveland, S., Mlengeya, T., Kaare, M., Haydon, D., Lembo, T., Laurenson, M. K., & Packer, C. (2007). The conservation relevance of epidemiological research into carnivore viral diseases in the serengeti. Conservation Biology, 21(3), 612–622. https://doi.org/10.1111/j.1523-1739.2007.00701.x
Cunningham, A. A., Daszak, P., & Wood, J. L. N. (2017). One Health, emerging infectious diseases and wildlife: Two decades of progress? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1725), 20160167. https://doi.org/10.1098/rstb.2016.0167
Daszak, P., & Cunningham, A. A. (1999). Extinction by infection. Trends in Ecology & Evolution, 14(7), 279. https://doi.org/10.1016/S0169-5347(99)01665-1
Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science, 287, 443–449. https://doi.org/10.1126/science.287.5452.443
Mech, L. D., & Kurtz, H. J. (1999). First record of coccidiosis in wolves, Canis lupus. Canadian Field Naturalist, 113, 305–306. https://pubs.er.usgs.gov/publication/70021460.
Dorresteijn, I., Schultner, J., Nimmo, D. G., Fischer, J., Hanspach, J., Kuemmerle, T., Kehoe, L., & Ritchie, E. G. (2015). Incorporating anthropogenic effects into trophic ecology: Predator–prey interactions in a human-dominated landscape. Proceedings of the Royal Society B: Biological Sciences, 282(1814), 20151602. https://doi.org/10.1098/rspb.2015.1602
Dryden, M. W., Payne, P. A., Ridley, R., & Smith, V. (2005). Comparison of common fecal flotation techniques for the recovery of parasite eggs and oocysts. Veterinary Therapeutics, 6(1), 14.
Engel, L., Hamedy, A., Kornacka-Stackonis, A., Langner, T., Birka, S., & Koethe, M. (2022). Toxoplasma gondii in raccoons (Procyon lotor) in Germany: A serosurvey based on meat juice. Parasitology Research, 121(12), 3417–3425. https://doi.org/10.1007/s00436-022-07646-w
Estrada-Peña, A., Bouattour, A., Camicas, J. L., & Walker, A. R. (2004). Ticks of domestic animals in the Mediterranean region. University of Zaragoza, Spain, 131.
Ferreira, S. C. M., Hofer, H., Madeira de Carvalho, L., & East, M. L. (2019). Parasite infections in a social carnivore: Evidence of their fitness consequences and factors modulating infection load. Ecology and Evolution, 9(15), 8783-8799.
Ford, A. T., Goheen, J. R., Augustine, D. J., Kinnaird, M. F., O’Brien, T. G., Palmer, T. M., Pringle, R. M., & Woodroffe, R. (2015). Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade. Ecology, 96(10), 2705–2714. https://doi.org/10.1890/14-2056.1
Fortin, D., Beyer, H. L., Boyce, M. S., Smith, D. W., Duchesne, T., & Mao, J. S. (2005). Wolves influence elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. Ecology, 86(5), 1320–1330. https://doi.org/10.1890/04-0953
Fournier, P. E., Roux, V., & Raoult, D. (1998). Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. International Journal of Systematic and Evolutionary Microbiology, 48(3), 839-849. https://doi.org/10.1099/00207713-48-3-839
Gortázar, C., Ferroglio, E., Höfle, U., Frölich, K., & Vicente, J. (2007). Diseases shared between wildlife and livestock: A European perspective. European Journal of Wildlife Research, 53(4), 241–256. https://doi.org/10.1007/s10344-007-0098-y
Halliday, J. E. B., Meredith, A. L., Knobel, D. L., Shaw, D. J., Bronsvoort, B. M. C., & Cleaveland, S. (2007). A framework for evaluating animals as sentinels for infectious disease surveillance. Journal of The Royal Society Interface, 4(16), 973–984. https://doi.org/10.1098/rsif.2007.0237
Han, B. A., Kramer, A. M., & Drake, J. M. (2016). Global patterns of zoonotic disease in mammals. Trends in Parasitology, 32(7), 565–577. https://doi.org/10.1016/j.pt.2016.04.007
Harris, N. C., & Dunn, R. R. (2010). Using host associations to predict spatial patterns in the species richness of the parasites of North American carnivores. Ecology Letters, 13(11), 1411–1418. https://doi.org/10.1111/j.1461-0248.2010.01527.x
Heddergott, M., Frantz, A. C., Stubbe, M., Stubbe, A., Ansorge, H., & Osten-Sacken, N. (2017). Seroprevalence and risk factors of Toxoplasma gondii infection in invasive raccoons (Procyon lotor) in Central Europe. Parasitology Research, 116(8), 2335–2340. https://doi.org/10.1007/s00436-017-5518-7
Hildebrandt, A., Franke, J., Meier, F., Sachse, S., Dorn, W., & Straube, E. (2010). The potential role of migratory birds in transmission cycles of Babesia spp., Anaplasma phagocytophilum, and Rickettsia spp. Ticks and Tick-Borne Diseases, 1(2), 105–107. https://doi.org/10.1016/j.ttbdis.2009.12.003
Hofmeester, T. R., Rowcliffe, J. M., & Jansen, P. A. (2017). Quantifying the availability of vertebrate hosts to ticks: A camera-trapping approach. Frontiers in Veterinary Science, 4. https://www.frontiersin.org/articles/10.3389/fvets.2017.00115
Hu, C.-H., Yu, P.-H., Kang, C.-L., Chen, H. L., & Yen, S.-C. (2019). Demography and welfare status of free-roaming dogs in Yangmingshan National Park, Taiwan. Preventive Veterinary Medicine, 166, 49–55. https://doi.org/10.1016/j.prevetmed.2019.03.009
Huang, A. S.-E., Chen, W.-C., Huang, W.-T., Huang, S.-T., Lo, Y.-C., Wei, S.-H., Kuo, H.-W., Chan, P.-C., Hung, M.-N., Liu, Y.-L., Mu, J.-J., Yang, J.-Y., Liu, D.-P., Chou, J.-H., Chuang, J.-H., & Chang, F.-Y. (2015). Public health responses to reemergence of animal rabies, Taiwan, July 16–December 28, 2013. PLOS ONE, 10(7). https://doi.org/10.1371/journal.pone.0132160
Jachowski, D. S., Butler, A., Eng, R. Y. Y., Gigliotti, L., Harris, S., & Williams, A. (2020). Identifying mesopredator release in multi-predator systems: A review of evidence from North America. Mammal Review, 50(4), 367–381. https://doi.org/10.1111/mam.12207
Kang C. L. (2019). Survey of Babesia spp. and ticks in wild small carnivores and sympatric dogs and cats in northern and western Taiwan. M.S. Thesis, National Taiwan University, Taipei, Taiwan.
Kauhala, K., & Holmala, K. (2006). Contact rate and risk of rabies spread between medium-sized carnivores in southeast Finland. Annales Zoologici Fennici, 43(4), 348–357.
Kreeger, T. (2003). The internal wolf: Physiology, pathology, and pharmacology. In D. Mech, & L. Boitani (Eds.), Wolves: Behaviour, ecology, and conservation (pp. 192–217). University of Chicago Press.
Lindenfors, P., Nunn, C. L., Jones, K. E., Cunningham, A. A., Sechrest, W., & Gittleman, J. L. (2007). Parasite species richness in carnivores: Effects of host body mass, latitude, geographical range and population density. Global Ecology and Biogeography, 16(4), 496–509. https://doi.org/10.1111/j.1466-8238.2006.00301.x
Lips, K. R., Brem, F., Brenes, R., Reeve, J. D., Alford, R. A., Voyles, J., Carey, C., Livo, L., Pessier, A. P., & Collins, J. P. (2006). Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences, 103(9), 3165–3170. https://doi.org/10.1073/pnas.0506889103
Liu, C.-C., Chi, C.-H., Yen, S.-C., Liu, J.-N., Ju, Y.-T., Kang, C.-L., Chang, C.-H., & Yu, P.-H. (2020). Blood lead and zinc levels and their impact on health of free-living small carnivores in taiwan, republic of china. Journal of Wildlife Diseases, 56(1), 157–166.
Liu, P.-C., Lin, C.-N., & Su, B.-L. (2022). Clinical characteristics of naturally Babesia gibsoni infected dogs: A study of 60 dogs. Veterinary Parasitology: Regional Studies and Reports, 28, 100675. https://doi.org/10.1016/j.vprsr.2021.100675
Masatani, T., Hayashi, K., Andoh, M., Tateno, M., Endo, Y., Asada, M., Kusakisako, K., Tanaka, T., Gokuden, M., Hozumi, N., Nakadohzono, F., & Matsuo, T. (2017). Detection and molecular characterization of Babesia, Theileria, and Hepatozoon species in hard ticks collected from Kagoshima, the southern region in Japan. Ticks and tick-borne diseases, 8(4), 581-587. https://doi.org/10.1016/j.ttbdis.2017.03.007
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & Hines, J. E. (2017). Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier.
McDonald, R. A., Delahay, R. J., Carter, S. P., Smith, G. C., & Cheeseman, C. L. (2008). Perturbing implications of wildlife ecology for disease control. Trends in Ecology & Evolution, 23(2), 53–56. https://doi.org/10.1016/j.tree.2007.10.011
Morner, T., Obendorf, D. L., Artois, M., & Woodford, M. H. (2002). Surveillance and monitoring of wildlife diseases. Revue Scientifique et Technique-Office International des Epizooties, 21(1), 67-76.
Murray, M. H., & St. Clair, C. C. (2015). Individual flexibility in nocturnal activity reduces risk of road mortality for an urban carnivore. Behavioral Ecology, 26(6), 1520–1527. https://doi.org/10.1093/beheco/arv102
Myers, B. J., & Kuntz, R. E. (1964). Nematode parasites from mammals taken on Taiwan (Formosa) and its offshore islands. Canadian Journal of Zoology, 42(5), 863–868. https://doi.org/10.1139/z64-085
Newsome, A. E., Parer, I., & Catling, P. C. (1989). Prolonged prey suppression by carnivores—Predator-removal experiments. Oecologia, 78(4), 458–467. https://doi.org/10.1007/BF00378734
O’Kelly, J. C., Post, T. B., & Bryan, R. P. (1988). The influence of parasitic infestations on metabolism, puberty and first mating performance of heifers grazing in a tropical area. Animal Reproduction Science, 16(3), 177–189. https://doi.org/10.1016/0378-4320(88)90011-5
Oleaga, A., Zanet, S., Espí, A., Pegoraro de Macedo, M. R., Gortázar, C., & Ferroglio, E. (2018). Leishmania in wolves in northern Spain: A spreading zoonosis evidenced by wildlife sanitary surveillance. Veterinary Parasitology, 255, 26–31. https://doi.org/10.1016/j.vetpar.2018.03.015
Otranto, D., & Deplazes, P. (2019). Zoonotic nematodes of wild carnivores. International Journal for Parasitology: Parasites and Wildlife, 9, 370–383. https://doi.org/10.1016/j.ijppaw.2018.12.011Painter, L. E., Beschta, R. L., Larsen, E. J., & Ripple, W. J. (2015). Recovering aspen follow changing elk dynamics in Yellowstone: Evidence of a trophic cascade? Ecology, 96(1), 252–263. https://doi.org/10.1890/14-0712.1
Püttker, T., Bueno, A. A., dos Santos de Barros, C., Sommer, S., & Pardini, R. (2013). Habitat specialization interacts with habitat amount to determine dispersal success of rodents in fragmented landscapes. Journal of Mammalogy, 94(3), 714-726.
Püttker, T., Bueno, A. A., de Barros, C., Sommer, S., & Pardini, R. (2013). Habitat specialization interacts with habitat amount to determine dispersal success of rodents in fragmented landscapes. Journal of Mammalogy, 94(3), 714–726. https://doi.org/10.1644/12-MAMM-A-119.1
Rausch, R. L. (1983). The biology of avian parasites: Helminths. 7, 367–442.
Ripple, W. J., & Beschta, R. L. (2012). Trophic cascades in Yellowstone: The first 15years after wolf reintroduction. Biological Conservation, 145(1), 205–213. https://doi.org/10.1016/j.biocon.2011.11.005
Ritchie, E. G., & Johnson, C. N. (2009). Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters, 12(9), 982–998. https://doi.org/10.1111/j.1461-0248.2009.01347.x
Simpson, V. R., Panciera, R. J., Hargreaves, J., McGarry, J. W., Scholes, S. F. E., Bown, K. J., & Birtles, R. J. (2005). Myocarditis and myositis due to infection with Hepatozoon species in pine martens (Martes martes) in Scotland. Veterinary Record, 156(14), 442-446. https://doi.org/10.1136/vr.156.14.442
Seguel, M., & Gottdenker, N. (2017). The diversity and impact of hookworm infections in wildlife. International Journal for Parasitology: Parasites and Wildlife, 6(3), 177–194. https://doi.org/10.1016/j.ijppaw.2017.03.007
Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, A. D., Hines, H. B., & Kenyon, N. (2007). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth, 4(2), 125–134. https://doi.org/10.1007/s10393-007-0093-5
Stepkovitch, B., Kingsford, R. T., & Moseby, K. E. (2022). A comprehensive review of mammalian carnivore translocations. Mammal Review, 52(4), 554–572. https://doi.org/10.1111/mam.12304
Stope, M. (2019). Wild raccoons in Germany as a reservoir for zoonotic agents. European Journal of Wildlife Research, 65(6), 94. https://doi.org/10.1007/s10344-019-1339-6
Stronen, A. V., Molnar, B., Ciucci, P., Darimont, C. T., Grottoli, L., Paquet, P. C., Sallows, T., Smits, J. E. G., & Bryan, H. M. (2021). Cross‐continental comparison of parasite communities in a wide‐ranging carnivore suggests associations with prey diversity and host density. Ecology and Evolution, 11(15), 10338–10352. https://doi.org/10.1002/ece3.7837
Su, H., Su, Y., & Huffman, M. A. (2013). Leaf swallowing and parasitic infection of the Chinese lesser civet Viverricula indica in northeastern Taiwan. Zoological Studies, 52(1), 22. https://doi.org/10.1186/1810-522X-52-22
Thompson, R. C. A. (2013). Parasite zoonoses and wildlife: One health, spillover and human activity. International Journal for Parasitology, 43(12), 1079–1088. https://doi.org/10.1016/j.ijpara.2013.06.007
Thomson, E. F., Gruner, L., Bahhady, F., Orita, G., Termanini, A., Ferdawi, A. K., & Hreitani, H. (2000). Effects of gastro-intestinal and lungworm nematode infections on ewe productivity in farm flocks under variable rainfall conditions in Syria. Livestock Production Science, 63(1), 65–75. https://doi.org/10.1016/S0301-6226(99)00111-6
Thorne, E. T., & Williams, E. S. (1988). Disease and endangered species: The black-footed ferret as a recent example. Conservation Biology, 2(1), 66–74. https://doi.org/10.1111/j.1523-1739.1988.tb00336.x
Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J., & Kuris, A. M. (2003). Introduced species and their missing parasites. Nature, 421(6923), 628-630. https://doi.org/10.1038/nature01346
van Riper III, C., van Riper, S. G., Goff, M. L., & Laird, M. (1986). The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs, 56(4), 327–344. https://doi.org/10.2307/1942550
Wang, H., C. (2011). Molecular epidemiology of tick-born emerging and zoonotic diseases. Centers for Disease Control, Ministry of Health and Welfare, Taiwan. Technical Report #DOH 100 DC 20 16, DOH 101 DC 2 301, DOH102 DC 2209. (in Chinese with English abstract). https://www.cdc.gov.tw/File/Get/sqrAKrJg_Uq8Ki5B0HtO3g?path=lOz41EGTS9AuuAnfs9v4QpQTkdhr8eEzYD9MhE0WRjqTY4j6AIbOe69XGqXmfl-S&name=zZnw9ci5cCsdxCzu_sL-qthPk_G3DFIKwB_BMMD2DVc
White, P. J., & Garrott, R. A. (2005). Northern Yellowstone elk after wolf restoration. Wildlife Society Bulletin, 33(3), 942–955. https://doi.org/10.2193/0091-7648(2005)33[942:NYEAWR]2.0.CO;2
White, R. J., & Razgour, O. (2020). Emerging zoonotic diseases originating in mammals: A systematic review of effects of anthropogenic land-use change. Mammal Review, 50(4), 336–352. https://doi.org/10.1111/mam.12201
World Bank. (2010). People, Pathogens and Our Planet, Vol 1: Towards a One Health Approach for Controlling. Zoonotic Diseases Report 50833-GLB. http://documents1.worldbank.org/curated/en/214701468338937565/pdf/508330ESW0whit1410B01PUBLIC1PPP1Web.pdf
Yamaguti, N., Tipton, V. J., Keegan, H. L., & Toshioka, S. (1971). Ticks of Japan, Korea, and the Ryukyu islands. Brigham Young University Science Bulletin, Biological Series, 15(1), 1.
Yen, T. Y., Wang, H. C., Chang, Y. C., Su, C. L., Chang, S. F., Shu, P. Y., & Tsai, K. H. (2021). Seroepidemiological study of spotted fever group rickettsiae and identification of a putative new species, Rickesttsia sp. Da-1, in Gongliao, Northeast Taiwan. Pathogens, 10(11), 1434. https://doi.org/10.3390/pathogens10111434
Yen, S.-C., Ju, Y.-T., Shaner, P.-J. L., & Chen, H. L. (2019). Spatial and temporal relationship between native mammals and free-roaming dogs in a protected area surrounded by a metropolis. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-44474-y
Ylönen, H. (1989). Weasels Mustela nivalis suppress reproduction in cyclic bank voles Clethrionomys glareolus. Oikos, 55(1), 138–140. https://doi.org/10.2307/3565886