研究生: |
張錚璿 Cheng-Shuan Chang |
---|---|
論文名稱: |
改變踏車運動迴轉速與負荷量之下肢肌電學與踩踏力量分析 The Analysis of Pedaling Force and Lower Extremity Emg Using Different Pedaling Rates and Loads |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 踩踏頻率 、踩踏作用力 |
英文關鍵詞: | pedaling rate, pedaling force |
論文種類: | 學術論文 |
相關次數: | 點閱:373 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:比較踏車運動中以不同踩踏頻率(60 rpm、75 rpm、90 rpm),進行不同負荷強度之運動時(50% POV、65% POV、80% POV),對於踩踏輸出力量與下肢作用肌之激發模式是否有所影響。方法:12名健康成年男性(平均年齡24.5 ± 0.9歲、身高174.3 ± 4.4公分、體重73 ± 8.4公斤)在實驗第一階段以漸增負荷法測得各受試者之踏車運動最大穩定輸出功率(POV max),實驗第二階段以平衡次序法進行三種不同運動強度與三種踩踏速度之踏車運動測驗,並分別記錄九種實驗情境中踩踏力量與下肢肌電圖之變化。結果:不同運動測驗情境中,踩踏力量之負功隨著踩踏頻率的增加而上升,且踩踏作用力之作用趨勢提前達顯著差異。大腿作用肌活化率隨著踩踏頻率的增加而下降,而小腿則相反,隨踩踏頻率的增加而活化率上升。結論:若以踩踏效率為依據,未受訓練者較佳之踩踏迴轉頻率為60 rpm;同時踩踏作用力的趨勢會隨著踩踏頻率的增加而前移,亦會隨著踩踏頻率的增加使力量輸出曲線平滑化,且三種運動強度之結果相近;若以作用肌活化率為依據,大、小腿肌肉在踩踏過程間活化率呈現消長現象,無顯著趨勢;在踩踏力量的實驗中,踏板測力計之重量會影響原始資料的數值,且踩踏頻率越快變化越明顯。
Purpose: The aim of this study was to compare the pedaling force and lower extremity EMG in different cycling intensity(50%、65%、80% POV) with different pedaling rate(60、75、90 rpm). Methods: Twelve healthy males(age 24.5 ± 0.9 yrs;height 174.3 ± 4.4 cm;weight 73 ± 8.4 kg) accepted power output at VO2 max(POV) tests by cycle ergometer in stage 1. In stage 2 these nine trial(3*3) were completed respectively by counter-balance design. During these tests, we recorded the pedaling force and lower extremity EMG by load cell(1000Hz) and EMG recorder(1000Hz). Result: In different trials, the negative pedaling work was increased when pedaling rate increased, and peak pedaling force was significantly different early in the cycle. The firing rate of thigh muscle decreased by increasing pedaling rate; on the contrary, the firing rate of thigh muscle increased by increasing pedaling rate. Conclusions: The optimum cadence is 60 rpm based on pedaling efficiency; furthermore, the tendency of pedaling force shifted forward and the curve of power output was smoothed when pedaling rate increasing. In accordance with muscle firing rate, the firing rate of thigh and leg muscle was negative correlated, but the tendency wasn’t significantly different. In the experiment of pedaling force, the weight of load cell affected the results, and as the pedaling rate increased, the effect was more obvious.
Asplund, C., & Pierre, P. (2004). Knee pain and bicycling: Fitness concepts for clinicians. Physician and Sportsmedicine, 32(4), 23–30.
Baum, B. S., & Li, L. (2003). Lower extremity muscle activities during cycling are influenced by load and frequency. Journal of Electromyography and Kinesiology, 13, 181–190.
Bieuzen, F., Lepers, R., Vercruyssen, F., Hausswirth, C., & Brisswalter, J. (2007). Muscle activation during cycling at different cadences: Effect of maximal strength capacity. Journal of Electromyography and Kinesiology, 17(6), 731–738.
Billaut, F., Bassetb, F. A., & Falgairette, G. (2005). Muscle coordination changes during intermittent cycling sprints. Neuroscience Letters, 380(3), 265–269.
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2005). Exercise physiology: Human bioenergetics and its applications (4th ED.). Columbus: McGraw-hill Higher Education.
Burdet, E., Osu, R., Franklin, D. W., Milner, T. E., & Kawato, M. (2001). The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature, 414, 446–449.
Burke, E. R., & Pruitt, A. L. (2003). Body positioning for cycling. High-tech cycling-Human Kinetics, 2, 69–92.
Callaghan, M. J. (2005). Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 9(3), 226–236.
Chapman, A. R., Vicenzino, B., Blanch, P., & Hodges, P. W. (2008). Patterns of leg muscle recruitment vary between and highly trained cyclists. Journal of Electromyography and Kinesiology, 18(3), 359-371.
Dannenberg, A. L., Needle, S., & Mullady, D. (1996). Predictors of injury among 1638 riders in a recreational long-distance bicycle tour: cycle across Maryland. American. Journal of Sports Medicine. 24(6), 747–753.
Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology, 18(5), 857–865.
Duc, S., Bertucci, W., Pernin, J. N., & Grappe, F. (2008). Muscular activity during uphill cycling: Effect of slope, posture, hand grip position and constrained bicycle lateral sways. Journal of Electromyography and Kinesiology, 18(1), 116–127.
Ericson, M. O., Nisell, R., Arboreius, U. P., & Ekholm, J. (1985). Muscular activity during ergometer cycling. Scandinavian Journal of Rehabilitation Medicine, 17(2), 53–61.
Furhapter-Rieger, A., & Muiller, W. (2006). Maximum sprint power on the bicycle ergometer at high load: Correlation with maximum pedal frequency at low load. Journal of Biomechanics, 39(S1), S560.
Goto, S., Toyoshima, S., & Hoshikawa, T. (1978). Study of the integrated EMG of leg muscles during pedalling at various loads, frequency and equivalent power. In: Assmussen E, Jorgensen K, editors. International series on biomechanics, 2A, 246–252.
Gregor, R. J., Broker, J. P., & Ryan, M. M. (1991). The biomechanics of cycling. Exercise and Sport Sciences Reviews, 19, 127–169.
Gregor, R. J., & Rugg, S. G. (1986). Effects of saddle height and pedaling cadence on power output and efficiency. In E. R. Burke (Ed.), Science of cycling, 69–90.
Gregor, R. J., Wheeler, J. B., Broker, J. P., & Ryan, M. M. (1994). The kinetics of shoe/pedal interface and load on pedaling kinetics in cycling. Journal of Biomechanics, 27(6), 668.
Hasson, C. J., Caldwell, G. E., & Emmerik, R. E. A. V. (2008). Changes in muscle and joint coordination in learning to direct forces. Human Movement Science, 27(4), 590-609.
Hansen, E. A., Waldeland, H., & Hallen, J. (2007). Seated-standing transition intensity in uphill cycling. Journal of Biomechanics, 40(S2), S193.
Hansen, E. A., Jorgensen, L. V., Jensen, K., Fregly, B. J., & Sjogaard, G. (2002). Crank inertial load affects freely chosen pedal rate during cycling. Journal of Biomechanics, 35(2), 277–285.
Hautier, C. A., Arsac, L. M., Deghdegh, K., Souquet, J., Belli, A., & Lacour, J. R. (2000). Influence of fatigue on EMG/force ratio and cocontraction in cycling. Medicine and Science in Sports and Exercise, 32(4), 839–843.
Kyle, C. R. (1989). The aerodynamics of helmets and handlebars. Cycling Science, 1(4), 22-25.
Lucia, A, S., Juan, A. F., Montilla, M., Can, ete. S., Santalla, A., & Earnest, C. (2004). In professional road cyclists, low pedaling cadences are less efficient. Medicine and Science in Sports and Exercise, 36(6), 1048–1054.
MacAuley, D. (1995). In A guide to cycling injuries:Prevention & treatment. Bristol: A & C black publishers ltd.
Marsh, A. P., & Martin, P. E. (1995). The relationship between cadence and lower extremity EMG in cyclists and non-cyclists. Medicine and Science in Sports and Exercise, 27(2), 217–225.
Mellion, M. B. (1991). Common cycling injuries: Management and prevention. Sports Medicine, 11, 52–70.
Neptune, R. R., & Herzog, W. (1999) The association between negative muscle work and pedaling rate. Journal of Biomechanics, 32(10), 1021-1026.
Nptunee, R. R., & Hull, M. L. (1999). A theoretical analysis of preferred pedaling rate selection in endurance cycling. Journal of Biomechanics, 32(4), 409-415.
Neptune, R. R., Kautz, S. A., & Hull, M.L. (1997). The effect of pedaling rate on coordination in cycling. Journal of Biomechanics, 30(10), 1051–1058.
Osu, R., Kamimura, N., Iwasaki, H., Nakano, E., Harris, C. M., & Wada, Y. (2004). Optimal impedance control for task achievement in the presence of signal-dependent noise. Journal of Neurophysiology, 92(2), 1199–1215.
Rocha, E., Bonezi, A., Molenda, D., Cantergi, D., Soares, D.. Candotti, C., & Loss, J. (2006). Place of the force and emg peak in different cadences in the cycling, Journal of Biomechanics, 39(S1), S193.
Raymond, C. H., Joseph, K. F., & Gabriel, Y. F. (2005). Muscle recruitment pattern in cycling: a review. Physical Therapy in Sport, 6(2), 89–96.
Sanderson, D. J., Martin, P. E., Honeyman, G., & Keefer, J. (2006). Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence. Journal of Electromyography and Kinesiology, 16(6), 642–649.
Takaishi, T., Yasuda, Y., Ono, T., & Moritani, T. (1996). Optimal pedaling rate estimated from neuromuscular fatigue cyclists. Medicine and Science in Sports and Exercise, 28(12), 1492–1497.
Umberger, B. R., Gerritsen, K. G. M., & Martin, P. E. (2006). Muscle fiber type effects on energetically optimal cadences in cycling. Journal of Biomechanics, 39(8), 1472–1479.
Wallace, M. A. (1997). A Peak Experience. Sportscience News July-Aug 1997, Retrieved July, 1997, from http://www.sportsci.org/news/news9707/wallace.htm
Wilber, C. A., Holland, G. J., & Madison, R. E. (1995). An epidemiological analysis of overuse injuries among recreational cyclists. International Journal of Sports Medicine, 16(3), 201–206.