簡易檢索 / 詳目顯示

研究生: 黃淑宜
Shu-Yi Huang
論文名稱: 人類遺傳疾病 第一部份:第八型脊髓小腦共濟失調症之分子遺傳及外遺傳研究 第二部份:台灣兩個Netherton徵候群病患家族之分子遺傳研究
Human Genetic Diseases: PartⅠ: Molecular genetic and epigenetic studies of spinocerebellar ataxia type 8 PartⅡ: Netherton syndrome: molecular analysis of two Taiwanese families
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 76
中文關鍵詞: 第八型脊髓小腦共濟失調症氧化壓力甲基化Netherton徵候群
英文關鍵詞: SCA8, KLHL1, epigenetic, oxidative stress, methylation, Netherton Syndrome
論文種類: 學術論文
相關次數: 點閱:258下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部份:
    第八型脊髓小腦共濟失調症(SCA8)為退化性神經疾病,其特徵為小腦功能異常或亦包含其他部位的神經性異常,此疾病和染色體13q21位置的SCA8基因3'端CTG三核重複擴增相關。自1999年以來,SCA8基因的CTG擴增突變見於遺傳性及偶發性的運動失調患者,及帕金森氏症(PD)、阿茲海默氏症(AD)、Friedreich's運動失調症等退化性神經疾病及精神病患,甚至於極少數正常人。SCA8基因表現於腦的各部位,但轉錄的RNA裁接後並不具open reading frame。在人類及老鼠基因體中,SCA8基因的5'端皆和緊鄰的KLHL1基因(actin結合蛋白)的5'端互補,即SCA8轉錄物和KLHL1轉錄物互為antisense RNA,故SCA8基因可能藉此antisense RNA,來調節KLHL1基因的表現。先前本實驗室對SCA8致病基因進行遺傳分析,亦在台灣人的PD患者中發現的CTG重複擴增的現象(Wu et al., 2004)。本研究利用PCR-genotyping及DNA定序技術,擴大分析正常人族群、運動失調症患者、PD患者、AD患者及其他神經疾病族群SCA8基因CTG重複變異,結果共發現8位個體具CTG重複擴增的對偶基因,包括1位正常人、2位運動失調症患者、1位肌張力異常症患者、1位泛發性路易體患者及3位PD患者。RT-PCR分析正常人和CTG重複擴增病患的淋巴細胞株,發現SCA8基因和KLHL1基因皆有表現。進一步利用甲基化專一的PCR檢測及限制酵素的甲基化檢測,分析SCA8基因和KLHL1基因重疊序列上的CpG島的甲基化情形,發現在正常人和SCA8基因CTG重複擴增患者細胞中,均有不同程度的甲基化情形,但和SCA8基因CTG重複並無絕對相關性。在氧化壓力相關研究中,經由氧化劑t-butylhydroperoxide (TBH) 處理後,正常人及SCA8基因CTG重複擴增患者淋巴細胞株的WST-1細胞增生檢測、Trypan blue排除檢測、Superoxide dismutase assay結果,皆無明顯差異,故推論SCA8基因CTG重複擴增,並未影響細胞株的抗氧化能力。

    第二部分:

    Netherton Syndrome (NS)是一種嚴重的體染色體隱性遺傳皮膚疾病,特色是先天性的紅皮症(congenital erythroderma)、特殊不正常的髮根結構(bamboo hair)及伴隨著體內IgE濃度提高的過敏性表現(atopic manifestations)。NS的病因是由於體內缺少絲胺酸蛋白抑制因子(serine protease inhibitor)的活性,而造成體內絲胺酸蛋白(serine protease)的活性異常提高。到目前為止,NS還沒有非常好的治療方法。NS的致病基因在2000年時被發現,位於染色體5q31-32的SPINK5 (serine protease inhibitor Kazal-type 5)基因,大小為61 kb,含有33個外顯子,其產物LEKTI蛋白,是一種絲胺酸蛋白抑制因子,廣泛的表現在人體各組織中,含有1064個胺基酸,有十五個potential inhibitory Kazal-type domains (D1–D15),包括典型的Kazal-type domain D2和D15。和NS相關的SPINK5基因突變類型主要是產生了前成熟終止密碼(premature termination codon),造成mRNA的不穩定,而使產物蛋白LEKTI (lympho-epithelial Kazal-type related inhibitor)的生成遽減。本研究目的為探討台灣兩個NS病患家族之分子致因。藉著PCR、定序來檢視兩位患者包括啟動子在內的SPINK5基因,找出和患者性狀相關的基因突變,並利用鄰近之6個微衛星序列及SPINK5基因上的5個SNP,對患者270家族進行連鎖分析。結果在患者2567的外顯子25上找到兩個突變點:已報導過的R790X及新發現的T808I,分別遺傳自患者的父親及母親。另一患者270為一新發現的R267Q變異的同型合子,此變異的Q對偶基因在正常人族群中約佔31%,但患者父親並未帶有此變異。進一步利用同步定量PCR (real-time PCR),來檢測患者270是否有缺失突變(deletion),結果顯示患者270在外顯子10的DNA套數和其啟動子鄰近序列(CA)20及D5S2013(為異型合子)相同,即排除其發生缺失突變的可能性。對於患者270在不符合遺傳定律之R267Q位點,推論可能發生基因轉換(gene conversion)。

    PartⅠ:

    Spinocerebellar ataxia type 8 (SCA8) is a neurodegenerative disorder characterized by cerebellar dysfunction alone or in combination with other neurological abnormalities. The expansion of 3' CTG trinucleotide repeat on chromosome 13q21 was shown to cause dominantly inherited SCA8. Since first described in 1999, the CTG expansions of the SCA8 gene were found in various familial and sporadic ataxia patients, as well as in patients with psychiatric disorder, Friedreich's ataxia, Parkinson's disease (PD), Alzheimer's disease (AD), and in rare instances in the general population. The SCA8 transcripts are found ubiquitously expressed in various brain tissues and no extended open reading frames are present. Thus the SCA8 transcript was suggested to act as an antisense regulator of the KLHL1, a gene encoding the actin-binding protein. This antisense/sense transcriptional organization is evolutionary conserved in both human and mouse. Previously we assessed repeat sizes at the SCA8 locus and detected abnormal expansions in SCA and PD patients (Wu et al., 2004). In this study, SCA8 repeat size ranges in control subjects and in patients with ataxia, dementia, PD, and other neurological disorders were set up by polymerase chain reaction (PCR)-genotyping and DNA sequencing. A total of 8 subjects with expanded allele were found, including one normal, two ataxia, one dystonia, one parkinsonism(DLBD), and three PD. RT-PCR analysis revealed that both SCA8 and KLHL1 were expressed in lymphoblastoid cells with normal or expanded CTG repeats. Analysis of aberrant methylation by methylation specific PCR assay and restriction enzyme based-methylation assay further revealed differential methylation of the SCA8 and KLHL1 gene exon 1 region. However, CTG repeat length-dependent methylation was not observed. Finally, oxidative stress tolerance of lymphoblastoid cells carrying normal or expanded SCA8 CTG repeats was assessed by quantifying the cell viability and the amount of SOD upon t-butylhydroperoxide (TBH) treatment. The results of no significant difference suggest that cells expressed expanded SCA8 CTG repeats were not more vulnerable to TBH treatment.

    Part Ⅱ:

    Netherton syndrome (NS) is a severe autosomal recessive skin disorder characterized by congenital ichthyosis, hair shaft abnormalities, and atopic manifestations. NS is caused by deficiency of serine protease inhibitor, resulting in high serine protease activity. So far there is no effective treatment for NS. In year 2000, the gene for NS was mapped to 5q31-q32 and was subsequently identified as serine protease inhibitor Kazal-type 5 (SPINK5). The SPINK5 gene spans a region of 61 kb and is composed of 33 exons. It encodes LEKTI (lympho-epithelial Kazal-type related inhibitor), a predicted serine protease inhibitor highly expressed in thymus and mucous epithelia. The LEKTI protein consists of 1064 amino acids organized into 15 potential inhibitory Kazal-type domains (D1-D15). The pathogenic mutations identified in the SPINK5 gene are predominantly nonsense, predicting marked instability of mutated SPINK5 transcripts and loss of expression of LEKTI. In the study, the molecular lesions of two Taiwanese patients with NS were examined. The entire coding sequence of the SPINK5 gene, flanking intron boundaries, and the proximal promoter region from the two patients were amplified for direct sequencing. Linkage analysis using six flanking microsatellite markers and five single nucleotide polymorphisms (SNPs) in the SPINK5 gene were also performed in patient 270's family to generate haplotypes. Patient 2567 has heterozygous mutations; the maternal allele has T808I (C to T transition in codon 808) and the paternal allele has R790X (C to T transition in codon 790). Patient 270 is homozygous for a novel polymorphism R267Q (G to A transition in codon 267). The R267Q was seen frequently upon screening 200 control chromosomes, with Q allele frequency 0.31. However, the change was not detected in the patient's father. Haplotype analysis revealed that the patient was homozygous for the 5 SNP in the genomic sequence of SPINK5 as well as the flanking (GT)17 and D5S413, in addition to the discrepancy of R267Q. Quantitative real-time PCR analysis further excludes the possibility of small deletion. Thus a gene conversion event may have resulted in the homozygosity for R267Q.

    第一部份: 目錄……………………………………………………………………......Ⅰ 中文摘要……………………………………………………………….............Ⅳ 英文摘要……………………………………………………………………….Ⅵ 圖表次……………………………………………………………………….....Ⅷ 壹、緒論……………………………………………………………………........1 一、脊髓小腦共濟失調症(SCA)…………………………………………..1 二、第八型脊髓小腦共濟失調症(SCA8)………………………………….2 三、SCA8基因……………………………………………………………...2 四、DNA甲基化對基因表現的影響………………………………………4 五、淋巴細胞株的氧化壓力研究………………………………………....5 六、研究動機……………………………………………………………….6 貳、研究材料與方法………………………………………..…………………..7 一、研究材料來源………………………………..………………………...7 二、淋巴細胞株的培養…………………………….……………………...7 三、基因組DNA (genomic DNA)的萃取…………………….…………...7 四、RNA的萃取……………………..………………………………….….8 五、聚合連鎖反應(PCR)……………………………………………..…8 六、Reverse transcription (RT)反應……………………………………..…9 七、SCA8基因3'UTR (CTG)n重複的基因型分析(genotyping) ……….9 八、SCA8 CTG重複擴增基因的選殖、定序……………………………..9 (一)自洋菜膠中純化擴增的DNA片段………………………..……..9 (二)接合反應(Ligation) ………………………………………..….....10 (三)轉形勝任細胞(competent cell)之製備…………………..……....10 (四)細菌的轉形作用(transformation) …………………..…………...11 (五)質體(Plasmid) DNA的小量製備……………………………......11 (六)定序分析…………………………………..……………………..12 九、RT-PCR分析淋巴細胞中SCA8、KLHL1基因的表現………………12 十、Methylation specific PCR (MSP)分析………………………………..13 (一) Sodium bisulfate處理………………………...………………....13 (二) Methylation specific PCR (MSP) ………………………..……...13 十一、Restriction enzyme based-methylation assay (RE-PCR)…………14 十二、淋巴細胞株的氧化壓力研究…………...…………………………14 (一) WST-1細胞增生檢測(cell proliferation assay).………………...14 (二) Trypan blue排除檢測(exclusion assay)...……………………....14 (三) Superoxide dismutase assay...…………...………….…………....15 參、結果……………….…………………………………………….………….16 一、SCA8基因CTG重複之遺傳資料庫建立……………………………16 二、淋巴細胞中SCA8、KLHL1基因的表現……………………………16 三、外遺傳研究(epigenetic studies) …………………….………………17 (一) Methylation specific PCR assay (MSP) ………………………....17 (二) Restriction enzyme based-methylation assay (RE-PCR)..…….....17 四、淋巴細胞株的氧化壓力研究……………………………..…………18 (一) WST-1細胞增生檢測(cell proliferation assay)...…………….....18 (二) Trypan blue排除檢測(exclusion assay)...…………………….....18 (三) Superoxide dismutase assay...…………………….……………...19 肆、討論…………………………………………………………………..........20 一、台灣地區不同族群SCA8基因CTG重複之遺傳資料庫………….20 二、淋巴細胞中SCA8、KLHL1基因的表現……………………………21 三、外遺傳研究(epigenetic studies) ……………………………..………21 (一) Methylation specific PCR assay…………….…………………...21 (二) Restriction enzyme based-methylation assay (RE-PCR)..…….....22 四、淋巴細胞株的氧化壓力研究……………………...…………………22 伍、參考文獻…………………………………………………………….........24 陸、附錄圖表…………………………………………………………….........28 第二部分: 目錄…………..………………………………………………………….……..Ⅸ 中文摘要……..…………………………………………………………..........ⅩⅠ 英文摘要……..…………………………………………………………......... ⅩⅢ 圖表次………..………………………………………………………………. ⅩⅤ 壹、緒論………………………………………………………………………..52 一、Netherton Syndrome(NS)……………………………….…………….52 二、SPINK5基因………………….……………………………….…….53 三、LEKTI蛋白…………………………………………………………...54 四、研究動機……………………………………………………………...55 貳、研究材料與方法………………………………………………………..…56 一、研究材料及基因組DNA的萃取………………………………….…56 二、聚合連鎖反應(PCR) ……………………………………………...56 三、DNA定序(Sequencing) ……………………………………………..56 四、限制酵素切割檢測試驗(Restriction assay)………………………….57 五、微衛星標記的連鎖分析(linkage analysis) ………………………….57 六、同步定量PCR (real-time PCR) ……………………………………..58 參、結果…………………………………………………………………….…..59 一、患者2567家族突變分析結果………………………………...…….59 二、患者270家族突變分析結果………………………………………..60 三、患者270家族同步定量PCR結果………………………………….61 肆、討論……………………………………….……………………………….62 一、患者2567家族的分子致因………………………………………….62 二、患者270家族的分子致因…………………………………………...63 伍、參考文獻……………………………………………………………….….65 陸、附錄圖表…………………………………………………………………..69

    第一部份:

    Benzow KA, Koob MD. The KLHL1-antisense transcript (KLHL1AS) is evolutionarily conserved. Mamm Genome 2002; 13: 134-41.
    Boyes J, Bird A. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. Embo J 1992; 11: 327-33.
    Cagnoli C, Mariotti C, Taroni F, Seri M, Brussino A, Michielotto C, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 2006; 129: 235-42.
    Cellini E, Nacmias B, Forleo P, Piacentini S, Guarnieri BM, Serio A, et al. Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Italy. Arch Neurol 2001; 58: 1856-9.
    Cleary JD, Nichol K, Wang YH, Pearson CE. Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nat Genet 2002; 31: 37-46.
    Freudenreich CH, Stavenhagen JB, Zakian VA. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol Cell Biol 1997; 17: 2090-8.
    Gorbunova V, Seluanov A, Mittelman D, Wilson JH. Genome-wide demethylation destabilizes CTG.CAG trinucleotide repeats in mammalian cells. Hum Mol Genet 2004; 13: 2979-89.
    Hashem VI, Pytlos MJ, Klysik EA, Tsuji K, Khajavi M, Ashizawa T, et al. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res 2004; 32: 6334-46.
    Hellenbroich Y, Pawlack H, Rub U, Schwinger E, Zuhlke C. Spinocerebellar ataxia type 4 Investigation of 34 candidate genes. J Neurol 2005.
    Henderson E, Miller G, Robinson J, Heston L. Efficiency of transformation of lymphocytes by Epstein-Barr virus. Virology 1977; 76: 152-63.
    Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, et al. Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet 1999; 23: 391-2.
    Ikeda Y, Shizuka-Ikeda M, Watanabe M, Schmitt M, Okamoto K, Shoji M. Asymptomatic CTG expansion at the SCA8 locus is associated with cerebellar atrophy on MRI. J Neurol Sci 2000; 182: 76-9.
    Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M. Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology 2000; 54: 950-5.
    Iyer RR, Pluciennik A, Rosche WA, Sinden RR, Wells RD. DNA polymerase III proofreading mutants enhance the expansion and deletion of triplet repeat sequences in Escherichia coli. J Biol Chem 2000; 275: 2174-84.
    Juvonen V, Kairisto V, Hietala M, Savontaus ML. Calculating predictive values for the large repeat alleles at the SCA8 locus in patients with ataxia. J Med Genet 2002; 39: 935-6.
    Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999; 21: 379-84.
    Kovtun IV, McMurray CT. Trinucleotide expansion in haploid germ cells by gap repair. Nat Genet 2001; 27: 407-11.
    Liu Y, Bambara RA. Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion. J Biol Chem 2003; 278: 13728-39.
    Manley K, Shirley TL, Flaherty L, Messer A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat Genet 1999; 23: 471-3.
    Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26: 191-4.
    McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M, Walcott J, et al. CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 2000; 9: 2197-202.
    Moseley ML, Schut LJ, Bird TD, Koob MD, Day JW, Ranum LP. SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet 2000; 9: 2125-30.
    Nemes JP, Benzow KA, Moseley ML, Ranum LP, Koob MD. The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum Mol Genet 2000; 9: 1543-51.
    Perez-Severiano F, Escalante B, Vergara P, Rios C, Segovia J. Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the Huntington's disease mutation. Brain Res 2002; 951: 36-42.
    Perez-Severiano F, Rios C, Segovia J. Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington's disease. Brain Res 2000; 862: 234-7.
    Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 1998; 143: 1457-70.
    Richard GF, Goellner GM, McMurray CT, Haber JE. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. Embo J 2000; 19: 2381-90.
    Robinson DN, Cooley L. Drosophila kelch is an oligomeric ring canal actin organizer. J Cell Biol 1997; 138: 799-810.
    Rolfsmeier ML, Dixon MJ, Lahue RS. Mismatch repair blocks expansions of interrupted trinucleotide repeats in yeast. Mol Cell 2000; 6: 1501-7.
    Rolfsmeier ML, Dixon MJ, Pessoa-Brandao L, Pelletier R, Miret JJ, Lahue RS. Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae. Genetics 2001; 157: 1569-79.
    Ryu H, Lee J, Olofsson BA, Mwidau A, Dedeoglu A, Escudero M, et al. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci U S A 2003; 100: 4281-6.
    Schols L, Szymanski S, Peters S, Przuntek H, Epplen JT, Hardt C, et al. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet 2000; 107: 132-7.
    Silveira I, Alonso I, Guimaraes L, Mendonca P, Santos C, Maciel P, et al. High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet 2000; 66: 830-40.
    Sobrido MJ, Cholfin JA, Perlman S, Pulst SM, Geschwind DH. SCA8 repeat expansions in ataxia: a controversial association. Neurology 2001; 57: 1310-2.
    Soong BW, Lu YC, Choo KB, Lee HY. Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch Neurol 2001; 58: 1105-9.
    Stevanin G, Herman A, Durr A, Jodice C, Frontali M, Agid Y, et al. Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nat Genet 2000; 24: 213; author reply 215.
    Sugden B, Mark W. Clonal transformation of adult human leukocytes by Epstein-Barr virus. J Virol 1977; 23: 503-8.
    Tazon B, Badenas C, Jimenez L, Munoz E, Mila M. SCA8 in the Spanish population including one homozygous patient. Clin Genet 2002; 62: 404-9.
    Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 2003; 34: 157-65.
    van den Broek WJ, Nelen MR, Wansink DG, Coerwinkel MM, te Riele H, Groenen PJ, et al. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum Mol Genet 2002; 11: 191-8.
    Veeraraghavan J, Rossi ML, Bambara RA. Analysis of DNA replication intermediates suggests mechanisms of repeat sequence expansion. J Biol Chem 2003; 278: 42854-66.
    Wen FC, Li YH, Tsai HF, Lin CH, Li C, Liu CS, et al. Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Lett 2003; 546: 307-14.
    Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang YC, et al. Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease. Clin Genet 2004; 65: 209-14.
    Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo AP, Rubinsztein DC. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 2002; 11: 1137-51.
    Yamada M, Sato T, Shimohata T, Hayashi S, Igarashi S, Tsuji S, et al. Interaction between neuronal intranuclear inclusions and promyelocytic leukemia protein nuclear and coiled bodies in CAG repeat diseases. Am J Pathol 2001; 159: 1785-95.
    Zeman A, Stone J, Porteous M, Burns E, Barron L, Warner J. Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatry 2004; 75: 459-65.

    第二部分:

    Bitoun, E., Chavanas, S., Irvine, A. D., Lonie, L., Bodemer, C., Paradisi, M., Hamel-Teillac, D., Ansai, S., Mitsuhashi, Y., Taieb, A., et al. (2002). Netherton syndrome: disease expression and spectrum of SPINK5 mutations in 21 families. J Invest Dermatol 118, 352-361.
    Chavanas, S., Bodemer, C., Rochat, A., Hamel-Teillac, D., Ali, M., Irvine, A. D., Bonafe, J. L., Wilkinson, J., Taieb, A., Barrandon, Y., et al. (2000). Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25, 141-142.
    Chavanas, S., Garner, C., Bodemer, C., Ali, M., Teillac, D. H., Wilkinson, J., Bonafe, J. L., Paradisi, M., Kelsell, D. P., Ansai, S., et al. (2000). Localization of the Netherton syndrome gene to chromosome 5q32, by linkage analysis and homozygosity mapping. Am J Hum Genet 66, 914-921.
    Greene, L. J., and Bartelt, D. C. (1969). The structure of the bovine pancreatic scretory trypsin inhibitor--Kazal's inhibitor. II. The order of the tryptic peptides. J Biol Chem 244, 2646-2657.
    Hausser, I., and Anton-Lamprecht, I. (1996). Severe congenital generalized exfoliative erythroderma in newborns and infants: a possible sign of Netherton syndrome. Pediatr Dermatol 13, 183-199.
    Jones, S. K., Thomason, L. M., Surbrugg, S. K., and Weston, W. L. (1986). Neonatal hypernatraemia in two siblings with Netherton's syndrome. Br J Dermatol 114, 741-743.
    Judge, M. R., Morgan, G., and Harper, J. I. (1994). A clinical and immunological study of Netherton's syndrome. Br J Dermatol 131, 615-621.
    Kabesch, M., Carr, D., Weiland, S. K., and von Mutius, E. (2004). Association between polymorphisms in serine protease inhibitor, kazal type 5 and asthma phenotypes in a large German population sample. Clin Exp Allergy 34, 340-345.
    Kato, A., Fukai, K., Oiso, N., Hosomi, N., Murakami, T., and Ishii, M. (2003). Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol 148, 665-669.
    Magert, H. J., Kreutzmann, P., Drogemuller, K., Standker, L., Adermann, K., Walden, M., John, H., Korting, H. C., and Forssmann, W. G. (2002). The 15-domain serine proteinase inhibitor LEKTI: biochemical properties, genomic organization, and pathophysiological role. Eur J Med Res 7, 49-56.
    Magert, H. J., Kreutzmann, P., Standker, L., Walden, M., Drogemuller, K., and Forssmann, W. G. (2002). LEKTI: a multidomain serine proteinase inhibitor with pathophysiological relevance. Int J Biochem Cell Biol 34, 573-576.
    Magert, H. J., Standker, L., Kreutzmann, P., Zucht, H. D., Reinecke, M., Sommerhoff, C. P., Fritz, H., and Forssmann, W. G. (1999). LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J Biol Chem 274, 21499-21502.
    Mitsudo, K., Jayakumar, A., Henderson, Y., Frederick, M. J., Kang, Y., Wang, M., El-Naggar, A. K., and Clayman, G. L. (2003). Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry 42, 3874-3881.
    Netherton, E. W. (1958). A unique case of trichorrhexis nodosa; bamboo hairs. AMA Arch Derm 78, 483-487.
    Nishio, Y., Noguchi, E., Shibasaki, M., Kamioka, M., Ichikawa, E., Ichikawa, K., Umebayashi, Y., Otsuka, F., and Arinami, T. (2003). Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese. Genes Immun 4, 515-517.
    Plantin, P., Delaire, P., Guillet, M. H., Labouche, F., and Guillet, G. (1991). [Netherton's syndrome. Current aspects. Apropos of 9 cases]. Ann Dermatol Venereol 118, 525-530.
    Pruszkowski, A., Bodemer, C., Fraitag, S., Teillac-Hamel, D., Amoric, J. C., and de Prost, Y. (2000). Neonatal and infantile erythrodermas: a retrospective study of 51 patients. Arch Dermatol 136, 875-880.
    Smith, D. L., Smith, J. G., Wong, S. W., and deShazo, R. D. (1995). Netherton's syndrome. Br J Dermatol 133, 153-154.
    Smith, D. L., Smith, J. G., Wong, S. W., and deShazo, R. D. (1995). Netherton's syndrome: a syndrome of elevated IgE and characteristic skin and hair findings. J Allergy Clin Immunol 95, 116-123.
    Sprecher, E., Chavanas, S., DiGiovanna, J. J., Amin, S., Nielsen, K., Prendiville, J. S., Silverman, R., Esterly, N. B., Spraker, M. K., Guelig, E., et al. (2001). The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton syndrome: implications for mutation detection and first case of prenatal diagnosis. J Invest Dermatol 117, 179-187.
    Stevanovic, D. V. (1969). Multiple defects of the hair shaft in Netherton's disease. Association with ichthyosis linearis circumflexa. Br J Dermatol 81, 851-857.
    Walley, A. J., Chavanas, S., Moffatt, M. F., Esnouf, R. M., Ubhi, B., Lawrence, R., Wong, K., Abecasis, G. R., Jones, E. Y., Harper, J. I., et al. (2001). Gene polymorphism in Netherton and common atopic disease. Nat Genet 29, 175-178.

    QR CODE