簡易檢索 / 詳目顯示

研究生: 陳立璋
Chen, Li-Jhang
論文名稱: 利用光達及無人機技術輔助3D地籍測量之研究
A Study on 3D Cadastral Survey Using LiDAR and UAV Technologies
指導教授: 王聖鐸
Wang, Sendo
口試委員: 陳哲銘
Chen, Zhe-Ming
張智安
Teo, Tee-Ann
王聖鐸
Wang, Sendo
口試日期: 2023/07/07
學位類別: 碩士
Master
系所名稱: 地理學系空間資訊碩士在職專班
Department of Geography_Continuing Education Master's Program of Geospatial Information Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 地籍圖地籍圖重測地籍調查表光達
英文關鍵詞: cadastral map, cadastral map recertification, cadastral survey form, Light Detection And Ranging (LiDAR), Unmanned Aviation Vehicle(UAV), Augmented Reality(AR), Virtual Reality(VR), Near Field Communication (NFC)
研究方法: 行動研究法
DOI URL: http://doi.org/10.6345/NTNU202301421
論文種類: 學術論文
相關次數: 點閱:327下載:63
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,光達(Light Detection And Ranging ,LiDAR)技術應用蓬勃發展,可以迅速獲得高精度的點雲資料及提供豐富且細緻3D資訊,相較一般測量方式逐點觀測物體角點,藉由點、線、面呈現土地權屬位置與形狀之2D空間資訊地籍圖,較無法直觀轉換平面地籍與垂直地上物相對關係;原2D測量地籍方式亦間接影響後續應用與拘限用途,例如:地籍圖與現地地上物相對關係立體感、地籍圖重測時地籍調查表所記載指界經界物(牆壁、巷道)因有疑義亦或土地開發銷毀原有經界物,而如何直覺、佐證與復原地籍圖重測指界位置與經界物等。
    本論文旨在探討如何應用光達及虛擬實境(Virtual Reality , VR)及擴增實境(Augmented Reality,AR)等技術輔助台灣地籍現況的改進。傳統的地籍調查常常面臨困難,包括地形複雜、環境危險及資料精度低等問題。本研究提出利用光達技術進行精準地形測量,並建立高度真實感的三維地籍資料庫。透過VR、AR等技術,使用者可以在360度環景中自由探索地籍資訊,提高地籍資料的可視化程度。
    透過VR、AR與近距離無線通訊技術(Near Field Communication ,NFC)等新興科技技術,分別應用於地籍圖重測、土地複丈、智慧圖根點等業務,經實際證實在輔助地籍測量成效及實際效益是可行的。本次研究成果如下: (一)LiDAR技術在地籍測量中的應用已經成熟且有效。透過對三維成果的平均值和標準差進行分析,縱坐標差異為0.004m±0.007m、橫坐標差異為0.005m±0.007m、高程差異為0.007m±0.008m。這顯示LiDAR技術的精度達到公分等級,符合地籍測量實施規則的要求,能夠提高地籍測量的可信度。(二)由於地面光達(Terrestrial LiDAR)受到FOV(Field of View)限制,導致點雲數據的不完整性,進而影響測量的精確度及後續應用。因此,利用無人機(Unmanned Aviation Vehicle ,UAV)進行高空掃描,可以補充地面光達點雲的缺漏,使得整體點雲資料更加完整。經過驗證分析,UAV點雲與地面光達點雲的三維坐標差異為平面距離差值為0.023m±0.025m,高程差值為0.037m±0.059m。這顯示UAV可以有效輔助地面光達及全站儀無法到達的測量區域,提供更完整的資料。(三)在牆上設置NFC圖根點,可以避免因道路翻修等原因導致圖根點損毀,進而影響土地複丈的辦理。利用智慧NFC圖根點結合VR、AR技術,可以提高精度、作業效率和土地複丈成果的品質。NFC、VR和AR技術的加值應用有助於新進人員快速尋覓圖根點點位資訊,並有效輔助地籍測量。(四)目前使用的地籍調查表僅記載重測時的經界物,並無相關影像紀錄和三維資訊,對後續的法院鑑測造成困擾。引入3D地籍與光達點雲平台可以免現地指界,加速地籍重測作業時間。然而,現行地籍調查表格式仍為舊式,無法直觀呈現3D地籍資訊。因此,建議引入4D地籍調查表,以彌補現有調查表的不足,並提供更完善的地籍資訊。

    In recent years, the application of LiDAR (Light Detection And Ranging) reverse engineering technology has flourished, enabling the rapid acquisition of high-precision point cloud data and providing rich and detailed 3D information. This is in contrast to traditional measurement methods, which observe objects point by point and use points, lines, and planes to represent the 2D spatial information of land ownership positions and shapes in cadastral maps. These traditional methods make it difficult to intuitively transform the relationships between planar cadastral maps and vertical objects above ground. The original 2D cadastral mapping method also indirectly affects subsequent applications and restricts their usage. For example, the 3D sense of the relationship between the cadastral map and the actual objects above ground, as well as during cadastral map re-measurement, boundary survey forms record boundary objects (walls, alleys) that may be ambiguous or destroyed due to land development. Therefore, it becomes necessary to find intuitive ways to verify and restore the boundary positions and objects during cadastral map re-measurement.
    This paper aims to explore the application of LiDAR and Virtual Reality (VR) technology to improve the current cadastral situation in Taiwan. Traditional cadastral surveys often face difficulties such as complex terrain, hazardous environments, and low data accuracy. This study proposes using LiDAR technology for precise terrain measurements and creating a highly realistic 3D cadastral database. With VR technology, users can freely explore cadastral information in a virtual environment, enhancing the visualization of cadastral data.
    Emerging technological tools, such as Virtual Reality (VR), Augmented Reality (AR), and Near Field Communication (NFC), have been utilized in the remeasurement of cadastral maps, land digitized revision, and in the business of intelligent mapping control points. Empirical evidence has demonstrated that these technologies effectively enhance the results and practical benefits of cadastral surveying. The following are the outcomes of this research:
    1. The application of LiDAR technology in cadastral surveying is mature and effective. By analyzing the average and standard deviation of the three-dimensional outcomes, the differences in longitudinal coordinates, transverse coordinates, and elevation are 0.004m±0.007m, 0.005m±0.007m, and 0.007m±0.008m, respectively. This demonstrates that the precision of LiDAR technology is at the centimeter level, fulfilling the requirements of cadastral surveying regulations and enhancing the credibility of cadastral surveys.
    2. Due to the limitations of FOV (Field of View) in Terrestrial LiDAR, the incompleteness of point cloud data ensues, thereby affecting the accuracy of measurement and subsequent applications. Therefore, by using Unmanned Aviation Vehicles (UAV) for high-altitude scanning, gaps in the terrestrial LiDAR point cloud can be supplemented, making the overall point cloud data more complete. After validation analysis, the three-dimensional coordinate difference between UAV point cloud and terrestrial LiDAR point cloud is 0.023m ± 0.025m in planar distance, and 0.037m ± 0.059m in elevation difference. This demonstrates that UAV can effectively assist areas unreachable by terrestrial LiDAR and total station instruments, providing more comprehensive data.
    3. Installing NFC mapping control point on walls can prevent damage due to road repairs, thus preventing disturbances to the process of land re-surveying. Combining intelligent wall mapping control point with VR and AR technology can improve precision, work efficiency, and the quality of land re-surveying results. The value-added application of NFC, VR, and AR technologies aids new personnel in quickly locating and understanding the intelligent mapping control point NFC and point location information and effectively assists in cadastral surveying.
    4. The current cadastral survey form only records boundary objects during remeasurement, and lacks relevant image records and three-dimensional information, causing difficulties for subsequent court evaluations. The introduction of a 3D cadastral and LiDAR point cloud platform can eliminate the need for onsite boundary pointing and expedite the time required for cadastral remeasurement. However, the current cadastral survey form format remains outdated, unable to intuitively present 3D cadastral information. Therefore, it is suggested that a 4D cadastral survey form be introduced to compensate for the deficiencies of the existing form and provide more comprehensive cadastral information.

    第一章 前 言 1 第一節 研究背景及動機 1 第二節 研究目的 3 第三節 第研究架構及流程 4 第二章 文獻回顧與探討 6 第一節 地籍調查表 6 第二節 圖根點演進 8 第三節 臺灣地籍測量之現況與面臨困難 8 第四節 多元測量儀器應用於地籍測量之相關探討 9 第三章 研究過程與執行情況 20 第一節 研究區域簡介與前置作業 20 第二節 研究區域平面與高程控制測量 22 第三節 航測標GCP及NFC牆上標圖根點設置 24 第四節 地面光達現況資料蒐集 25 第五節 地面光達掃描資料後處理 30 第六節 研究區域 UAV 攝影及影像處理 32 第七節 UAV點雲與地面光達點雲結合拼接 37 第八節 UAV與地面光達點雲過濾與刪除 39 第四章 成果分析與研究成果 40 第一節 地面光達點雲精度分析 40 第二節 UAV點雲與地面光達點雲精度評估 43 第三節 3D地籍與光達點雲平台及4D地籍調查表 50 第四節 VR、AR於地籍應用及NFC牆上圖根點 54 第五章 結論建議 60 第一節 結論 60 第二節 建議 62 第三節 未來展望 63 參考文獻 64 附錄 69 附錄一、平面、高程控制測量點之記 69 附錄二、導線觀測手簿 72 附錄三、網平差成果報表 78 附錄四、間接水準高程閉合成果表 82 附錄五、NFC牆上標圖根點點之記 83 附錄六、特徵點近、遠照 86

    Chio, S.-H., and Hou, K.-H., (2021). Application of a hand-held LiDAR scanner for the urban cadastral detail survey in digitized cadastral area of Taiwan urban city. Remote Sensing for Land Administration 2.0 Journal,13(24):4981.

    Choi, B.G., Na, Y.W., Lee, K.S., Lee, J.I, (2014). A Study on the Evaluation of Airborne Lidar Heig Ht Accuracy for Application of 3D Cadastral. Korean Spatial Information Society Journal,22(2):33-40.

    Demyanov, V., and Yasyukevich, Y., (2021). Space weather: Risk factors for global navigation satellite systems. Solar-Terrestrial Physics Journal,2(7):28-47.

    Engelbrecht, J., and Lubczynski, M.W., (2018). Integration of LiDAR and WorldView-2 data for automated extraction of tree-based ecosystem services in a complex urban environment. Remote Sensing of Environment, 209:647-664.

    Guo, H. D., Wang, C. C., & Yu, Z.Y., (2014). Review of the applications of airborne LiDAR in China. Progress in Geography, 33(6):756-767.

    Gini, R, Pagliari, D., & Passoni, D., (2013). Use of unmanned aerial systems for multisensor hydrogeological measurements. Environmental Earth Sciences, 69(5):1719-1727.

    Gerdan, G.P., (1991). Rural cadastral surveying with the global positioning system. Australian Surveyor Journal,36(3):184-194.

    He, G.B., Li, L.L., (2020). Research and application of LiDAR technology in cadastral surveying and mapping. Int. Arch. Photogramm. Remote Sens. Spatial , XLIII(B1): 33-37.

    Hong, S., (2013). The Accuracy Analysis of VRS GNSS for Applying Cadastral Surveying. Journal of the Korea Academia Industrial cooperation Society,14(1): 94-100.

    Koeva, M., and Oude Elberink, S., (2016). Challenges for Updating 3D Cadastral Objects using LiDAR and Image- based Point Clouds. Proceedings 5th International FIG Workshop on 3D Cadastre, :169-182.

    Kim, J., and Kim, J., (2018). Accuracy analysis of cadastral control point and parcel boundary point by flight altitude using UAV Journal of the Korean Society of Surveying. Geodesy, Photogrammetry and Cartography,36(4):223-233.

    Mantey, S., (2019). Suitability of Unmanned Aerial Vehicles for Cadastral Surveys. Ghana Mining Journal,19(1):1-8.

    Pitri, A., Arslan, N., Deveci, B., Aydin, O., Erkaya, H., and Hosbas, R.G., (2013).Real-Time Kinematic GPS for Cadastral Surveying.Survey Review Journal.41(314):339-351.

    Presennakumar, B., Kumar S., Anoop, Ramakrishna Rao, D., Muraleedharen Nair, S., Santhibhavan Vasudevanpillai, Mohankumar ,Veerabuthiran, S., Satyanarayana, M., (2006).Effects of the atmosphere on image quality in the imaging lidar system, SPIE Asia-Pacific Remote Sensing , 6409: 64090X.

    Velodyne Lidar, Inc. (2018). Velodyne lidar technology in autonomous vehicles. Retrieved from Luo, W., Zhang, Y., & Wang, C. (2018). Integration of LiDAR data and aerial imagery for automatic 3D building roof modeling. Remote Sensing, 10(8):1283.

    Zhong, L., Liu, P., Wang, L, Wei, Z., Guan, H., Yu, Y.,(2016). A combination of stop-and-go and electro-tricycle laser scanning sys temsfor rural cadastral surveys. ISPRS International Journal,5(9):160.

    Šafář, V., Potůčková, M., Karas, J.,Tlustý, J., Štefanová, E., Jančovič, M., Žofková, D.,(2021). The use of uav in cadastral mapping of the czech republic. ISPRS International Journal, 10(6):380.

    何維信,吳鴻銘. (2007).臺灣地籍圖重測調查指界法制之研究.台灣土地研究.10(1).71-96.

    莊璧華,曾鈺懿,劉榮增. (2014).提升地籍圖重測之地籍調查作業流程效率論文.

    袁克中,高名旻,湯凱佩,王建明. (2016) .自動化輔助地籍調查作業之研究.中華民國地籍測量學會會刊.35(4) ,27-38.

    陳立璋,蕭介峰.(2021).不同載體光達輔助地籍測量之研究.中華民國地籍測量學會會刊.40(2) ,19-43.

    吳密察.(2017) .臺灣總督府「土地調查事業(1898-1905)」的展開及其意義. 師大台灣史學報,第10期, 5-35.

    陳坤煜.( 2009).VBS-RTK 應用於圖根點定位精度之研究-以名間地區為例,逢甲大學環境資訊科技學程碩士論文.

    陳立璋,蕭介峰.(2020).利用光達技術(LiDAR)辦理圖根點不落地.中華民國地籍測量學會第七屆金界獎.

    鄭彩堂,董荔偉,鄒慶敏,蘇惠璋,劉正倫.(2011).地籍圖簿地不符解決對策之研究.內政部國土測繪中心自行研究報告.

    謝博丞,鄔守中,蘇惠璋.(2013).圖解地籍圖以數值作業方式辦理土地複丈之探討-以經界現況或地籍圖註記邊長為例.內政部國土測繪中心自行研究報告.

    內政部地政司,(2020).內政部109年度三維國土形變及空間智能分析技術發展工作案.期末報告書.

    徐麗莉.(2016).地籍測量錯誤爭議之研究-以司法判決為中心.新北市政府105年度自行研究報告.

    盧鄂生,鄭彩堂.(2010).公務人員測量製圖類科教考訓用合一之探討.中華民國地籍測量學會會刊.29(4) ,33-50.

    洪瑞豐. (2018).土地複丈錯誤之國家賠償責任探討.國立高雄大學政治法律學系碩士論文.

    許松,鄭彩堂(1998).地籍測量改進方向之探討.中華民國地籍測量學會刊.17(3) ,57-72.

    審計部(2019).108年度中央政府總決算審核報告:乙-171.

    江政矩.(2019).無人機航空攝影測量輔助土地複丈可行性之研究。國立政治大學地政學系碩士學位論文.

    羅量來.(2017).比對多衛星組合RTK與e-GNSS在地籍測量上之應用與分析。國立國防大學理工學院環境資訊及工程學系碩士學位論文.

    林偉祥.(2011).e-GPS應用於山區地籍測量之研究:以台電鐵塔用地預為分割測量為例。桃園:國立國防大學理工學院環境資訊及工程學系碩士學位論文.

    邱式鴻.(2020).提升手持式光達點雲精度輔助市地地籍現況測量之研究:科技部補助專題研究計畫報告.

    葉宇平.(2019).以車載光達點雲協助圖解數化區辦理土地鑑界之研究。國立政治大學地政學系碩士學位論文.

    林煒涎.(2007).3D雷射掃描儀應用於戶地測量之研究。國立成功大學地球科學系碩士學位論文.

    陳俊達.(2018).UAV正射影像於地籍測量應用之研究-以未辦地籍整理地區現況測量為例。國立臺灣海洋大學海洋工程學系碩士學位論文.

    張寶堂.(2019).利用無人飛機系統航拍輔助土地複丈。國立臺灣師範大學地理學系空間資訊碩士在職專班論文.

    葉大綱.(2019).108年度e-GNSS定位技術運用於地籍圖重測作業可行性驗證實務研析:科技部補助專題研究計畫報告.

    葉大綱.(2016).建立e-GNSS地籍測量之標準作業流程:科技部補助專題研究計畫報告.

    曾義星,郭麟霂,王驥魁(2019).光達測製與視覺化,地質期刊,38(2):35-39.

    何維信、劉啟清(2012).測量學,第七版,73-78.

    葉怡成(2015).現代測量學,第一版,5-10-5-11.

    新竹市地政事務所.(2019). 3D地籍與光達點雲平台.內政部地政司-視覺化時態地籍調查表研析之可行性評估.

    Crommelinck, S., and Koeva, M., (2019, May 15).Towards Cadastral Intelligence?Extracting visible boundaries from UAV data through image analysis and machine learning. GIM International Journal. Retrieved January 15, 2023, from http: https://www.gim-international.com/content/article/towards-cadastral-intelligence.

    國土測繪中心,(2022).測繪知識-地籍測量的演進.2023.04.02.,取自:https://www.nlsc.gov.tw/cp.aspx?n=1536.

    地政司,(2022).110年度地籍圖重測成果統計圖表.2023.04.02.,取自:https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDA3L3JlbGZpbGUvOTcyMS8yNTkwMjgvYWY3NWEwY2YtMjMxOC00Y2U3LWJiYzMtM2IzY2U1OWFjODA2LnBkZg%3D%3D&n=MTEw5bm05bqm5Zyw57GN5ZyW6YeN5ris5oiQ5p6c57Wx6KiI5ZyW6KGoLnBkZg%3D%3D&icon=.pdf.

    地政司,(2023).地政整合資訊服務共享協作平台.2023.04.02.,取自:https://cop.land.moi.gov.tw/Portal/index.aspx.

    下載圖示
    QR CODE