簡易檢索 / 詳目顯示

研究生: 林栩茵
Lam, Hoi-Ian
論文名稱: 探討TRIP6與IFIT5之交互作用於細胞中扮演之角色
The physiological role of TRIP6 and IFIT5 interaction in cells
指導教授: 賴韻如
Lai, Yun-Ju
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 48
中文關鍵詞: 多型性神經膠質母細胞瘤甲狀腺素受體作用蛋白質6干擾素誘導蛋白質5細胞移動
英文關鍵詞: Glioblastoma, TRIP6, IFIT5, Cell migration
DOI URL: http://doi.org/10.6345/NTNU201900822
論文種類: 學術論文
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多型性神經膠質母細胞瘤(Glioblastoma multiforme, GBM)是惡性且侵潤性高的原發性腦瘤,目前臨床上仍無法完全根治。因此,瞭解其細胞遷移及浸潤機制,有助於透過有效抑制腫瘤浸潤能力,減少GBM侵襲正常腦組織而達到提高患者的存活率。細胞點狀黏著分子TRIP6(Thyroid receptor-interacting protein 6)和干擾素誘導蛋白質IFIT5(Interferon Induced Proteins with Tetratricopeptide Repeats 5),兩者都被研究出可調控肌動蛋白質及活化發炎因子NF-κB,而實驗室在之前的研究中已發現TRIP6和IFIT5之間會有交互作用。為深入了解此交互作用是否影響此二蛋白質在細胞中的功能,本研究首先探討TRIP6與IFIT5之結合位置。結果顯示TRIP6的C端負責與IFIT5進行交互作用並促進IFIT5共聚到肌動蛋白質形成之壓力絲上。我們進一步透過拍攝細胞移動變化影像得知,IFIT5與TRIP6皆會促進細胞的動態變化。利用傷口復原法檢測細胞移動之能力,發現IFIT5雖促進細胞之形變卻無法促進細胞移動,反而有抑制之趨勢,並抑制TRIP6促進之細胞移動現象。但若只有過表現TRIP6之C端與IFIT5,IFIT5抑制現象反而減弱,因此TRIP6之C端可能與內生的TRIP6競爭IFIT5,降低IFIT5抑制內生型TRIP6的作用。由這些結果可知,對GBM患者IFIT5可能具抑制細胞移動的作用,從而降低細胞的侵略性而使病人存活率增加。

    Glioblastoma, the most common primary brain tumors, are malignant and highly invasive tumors. There are many different treatments, glioblastoma patients can't be cure. Therefore, understanding its cell migration and infiltration mechanism may reduce the invasion of glioblastoma to normal brain tissue and improve patients’ survival. Focal adhesion molecule, TRIP6, and interferon induced protein, IFIT5, both have been reported to be involved in regulation of cell migration and activation of inflammatory factor, NF-κB. We had demonstrated that the TRIP6 interacted with IFIT5 in cells. To further investigate the physiological role of this interaction, we first identify the domain of TRIP6 responsible for this interaction. We found that the C-terminal 3 LIM domains of TRIP6 interacts with IFIT5. Furthermore, through the interaction with IFIT5, TRIP6 promoted the co-localization of IFIT5 and actin. We also demonstrated that overexpression IFIT5 and TRIP6 both enhanced the dynamic morphological changes of cells. We further examined cell migration ability by wound healing assay, and found that although IFIT5 promoted cell dynamic changes, it did not enhance cell migration. IFIT5 significantly inhibited TRIP6-promoted cell migration. This inhibitory effect is reduced when IFIT5 co-expressed with the C-terminal domain of TRIP6. The C-terminal domain of TRIP6 may compete with endogenous TRIP6 for the binding of IFIT5, therefore, it reduced the inhibitory effects of IFIT5 on TRIP6. In summary, IFIT5 may inhibit the migration of GBM cells and therefore increase the survival rate of patients.

    縮寫表(Abbreviations) I 中文摘要 II Abstract IV 1 緒論 1 1.1 甲狀腺素受體作用蛋白質6(Thyroid Receptor Interacting Protein 6, TRIP6) 1 1.2 干擾素誘導四倍體胜肽鏈重複蛋白質5(Interferon Induced Proteins with Tetratricopeptide Repeats 5, IFIT5) 3 1.3 多型性神經膠質母細胞瘤(Glioblastoma Multiform, GBM) 5 2 研究材料與方法 8 2.1細胞培養(Cell Culture) 8 2.2 質體大量製備(Maxi-prep) 9 2.4 免疫共沉澱法(Co-Immunoprecipitation, Co-IP) 11 2.5 西方墨點法(Western Blot) 13 2.6 電穿孔法(Electroporation) 15 2.7免疫螢光染色分析(Immunofluorescent staining) 16 2.8 活細胞即時顯微影像(Time-Lapse Live Cell Images) 17 2.9 細胞刮傷實驗(Wound Healing Assay) 17 3 結果 19 3.1 TRIP6的C端與IFIT5進行交互作用 19 3.2 TRIP6促進IFIT5共聚在壓力絲上 20 3.3 IFIT5與TRIP6促進之細胞形變 21 3.4、IFIT5與TRIP6促進之細胞形變數據分析 23 3.5 IFIT5與TRIP6所促進之細胞形變幅度的數據分析 24 4 討論 26 5文獻參考 30 6 圖表 35

    1. Chen, L., et al., CD95 promotes tumour growth. Nature, 2010. 465(7297): p. 492.

    2. Bach, I., The LIM domain: regulation by association. Mechanisms of development, 2000. 91(1-2): p. 5-17.

    3. Wang, Y. and T.D. Gilmore, LIM domain protein Trip6 has a conserved nuclear export signal, nuclear targeting sequences, and multiple transactivation domains. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2001. 1538(2-3): p. 260-272.

    4. Guryanova, O., et al., Downregulation of TRIP6 gene expression induces actin cytoskeleton rearrangements in human carcinoma cell lines. Molecular Biology, 2005. 39(5): p. 792-795.

    5. Kassel, O., et al., A nuclear isoform of the focal adhesion LIM-domain protein Trip6 integrates activating and repressing signals at AP-1-and NF-κB-regulated promoters. Genes & development, 2004. 18(20): p. 2518-2528.

    6. Beckerle, M.C., Zyxin: zinc fingers at sites of cell adhesion. Bioessays, 1997. 19(11): p. 949-957.

    7. Lin, V.T. and F.-T. Lin, TRIP6: an adaptor protein that regulates cell motility, antiapoptotic signaling and transcriptional activity. Cellular signalling, 2011. 23(11): p. 1691-1697.

    8. Wang, Y. and T.D. Gilmore, Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2003. 1593(2-3): p. 115-120.

    9. Hirata, H., H. Tatsumi, and M. Sokabe, Zyxin emerges as a key player in the mechanotransduction at cell adhesive structures. Communicative & integrative biology, 2008. 1(2): p. 192-195.

    10. Kadrmas, J.L. and M.C. Beckerle, The LIM domain: from the cytoskeleton to the nucleus. Nature reviews Molecular cell biology, 2004. 5(11): p. 920.
    11. Xu, J., et al., TRIP6 enhances lysophosphatidic acid-induced cell migration by interacting with the lysophosphatidic acid 2 receptor. J Biol Chem, 2004. 279(11): p. 10459-68.

    12. Lin, V.T., et al., Trip6 regulates p27KIP1 to promote tumorigenesis. Molecular and cellular biology, 2013: p. MCB. 01149-12.

    13. Lai, Y.J., et al., TRIP6 regulates neural stem cell maintenance in the postnatal mammalian subventricular zone. Developmental Dynamics, 2014. 243(9): p. 1130-1142.

    14. Fensterl, V. and G.C. Sen, The ISG56/IFIT1 gene family. Journal of Interferon & Cytokine Research, 2011. 31(1): p. 71-78.

    15. D'Andrea, L.D. and L. Regan, TPR proteins: the versatile helix. Trends in biochemical sciences, 2003. 28(12): p. 655-662.

    16. Zeytuni, N. and R. Zarivach, Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure, 2012. 20(3): p. 397-405.

    17. Pichlmair, A., et al., IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nature immunology, 2011. 12(7): p. 624.

    18. Katibah, G.E., et al., tRNA binding, structure, and localization of the human interferon-induced protein IFIT5. Molecular cell, 2013. 49(4): p. 743-750.

    19. Ivashkiv, L.B. and L.T. Donlin, Regulation of type I interferon responses. Nature reviews Immunology, 2014. 14(1): p. 36.

    20. Der, S.D., et al., Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proceedings of the National Academy of Sciences, 1998. 95(26): p. 15623-15628.

    21. Zheng, C., et al., IFIT5 positively regulates NF-κB signaling through synergizing the recruitment of IκB kinase (IKK) to TGF-β-activated kinase 1 (TAK1). Cellular signalling, 2015. 27(12): p. 2343-2354.

    22. Zhou, X., et al., Interferon induced IFIT family genes in host antiviral defense. International journal of biological sciences, 2013. 9(2): p. 200.

    23. Kumar, P., et al., Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5′-terminal regions of cap0-, cap1-and 5′ ppp-mRNAs. Nucleic acids research, 2013. 42(5): p. 3228-3245.

    24. Lai, K.-C., et al., IFN-induced protein with tetratricopeptide repeats 2 inhibits migration activity and increases survival of oral squamous cell carcinoma. Molecular Cancer Research, 2008. 6(9): p. 1431-1439.

    25. Lo, U.-G., et al., IFNγ-Induced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer research, 2019. 79(6): p. 1098-1112.

    26. Lo, U.-G., et al., Interferon-induced IFIT5 promotes epithelial-to-mesenchymal transition leading to renal cancer invasion. American journal of clinical and experimental urology, 2019. 7(1): p. 31.

    27. Phillips, H.S., et al., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 2006. 9(3): p. 157-73.

    28. <- Glioblastoma Background Standard Treatment Paradigms and Supportive Care Considerations.pdf>.

    29. Kleihues, P., et al., The WHO classification of tumors of the nervous system. Journal of Neuropathology & Experimental Neurology, 2002. 61(3): p. 215-225.

    30. Louis, D.N., et al., The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica, 2007. 114(2): p. 97-109.

    31. Stupp, R., et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine, 2005. 352(10): p. 987-996.

    32. Van Meir, E.G., et al., Exciting new advances in neuro‐oncology: the avenue to a cure for malignant glioma. CA: a cancer journal for clinicians, 2010. 60(3): p. 166-193.

    33. Onishi, M., et al., Angiogenesis and invasion in glioma. Brain Tumor Pathol, 2011. 28(1): p. 13-24.

    34. Han, S.-P., et al., SNAI1 is involved in the proliferation and migration of glioblastoma cells. Cellular and molecular neurobiology, 2011. 31(3): p. 489-496.

    35. Mahabir, R., et al., Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro-oncology, 2013. 16(5): p. 671-685.

    36. Mikheeva, S.A., et al., TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Molecular cancer, 2010. 9(1): p. 194.

    37. Xia, M., et al., Identification of the role of Smad interacting protein 1 (SIP1) in glioma. Journal of neuro-oncology, 2010. 97(2): p. 225-232.

    38. <-1 SNAI2 Slug promotes growth and invasion in human gliomas.pdf>.

    39. Kalluri, R. and E.G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84.

    40. Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006. 444(7120): p. 756.

    41. Bernheim, A., O. Halfon, and B. Boutrel, Controversies about the enhanced vulnerability of the adolescent brain to develop addiction. Frontiers in pharmacology, 2013. 4: p. 118.

    42. Blanchette, M. and D. Fortin, Blood-brain barrier disruption in the treatment of brain tumors. Methods Mol Biol, 2011. 686: p. 447-63.

    43. van Tellingen, O., et al., Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat, 2015. 19: p. 1-12.
    44. Lai, Y.J., et al., The adaptor protein TRIP6 antagonizes Fas-induced apoptosis but promotes its effect on cell migration. Mol Cell Biol, 2010. 30(23): p. 5582-96.

    45. 劉文善, 1. 探討TRIP6與IFIT5在神經膠質母細胞瘤中的交互作用 / 2. 海檬果萃取物對神經膠質母細胞瘤及其癌幹細胞的影響, in 生命科學系. 國立臺灣師範大學: 台北市. p. 67.

    46. Lai, Y.J., et al., c-Src-mediated phosphorylation of TRIP6 regulates its function in lysophosphatidic acid-induced cell migration. Mol Cell Biol, 2005. 25(14): p. 5859-68.

    47. <*IFNg-induced IFIT5 promotes epithelial-to-mesenchymal transition leading to renal cancer invasion..pdf>.

    48. Huang, J., et al., The roles and mechanism of IFIT5 in bladder cancer epithelial-mesenchymal transition and progression. Cell Death Dis, 2019. 10(6): p. 437.

    下載圖示
    QR CODE