簡易檢索 / 詳目顯示

研究生: 簡至廷
Chien, Zhi-Ting
論文名稱: 鉑合金觸媒的乙醇氧化反應機理之探討
Investigation of Ethanol Oxidation Reaction (EOR) Mechanism on Platinum alloys
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 54
中文關鍵詞: 乙醇氧化反應即時性傅立葉紅外線光譜儀氣相層析合金觸媒
英文關鍵詞: EOR, in situ FT-IR, GC, Pt alloy catalyst
論文種類: 學術論文
相關次數: 點閱:271下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以 Pt 3 Pd、Pt 3 Ag、Pt 3 Rh、Pt 3 Au、Pt 3 Cu、Pt 3 Ru 等五種合金觸媒與 Pt
    金屬做比較在鹼性 KOH 溶液下對乙醇電氧化反應的產物做及時偵測,並將金屬
    對乙醇的氧化反應機構做有系統的研究。
    本實驗所用到的陽極合金觸媒皆是以乙二醇-硼酸還原法製備,以乙二醇以及
    硼酸 NaBH 4 做為還原劑還原金屬並吸附在 Vulcan XC-72 碳黑上,此法合成出來
    的樣品粉末會先以 XRD、SEM 與 EDX 測試鑑定其結構、組成、以及顆粒大小
    等物理性質的鑑定,再將合成出來的金屬觸媒吸附在玻璃碳電極上進行電化學測
    是。在本文中,電化學實驗是以循環伏安法以及計時安培法來測試得到金屬觸媒
    的電化學性質、並將之分類。以循環伏安法在-0.9V~0.6V 掃描後,以 FT-IR 以及
    GC 分析經由乙醇電氧化產生出來的乙酸、乙醛、以及 CO 2 等產物,並探討、歸
    納合金觸媒對乙醇的電氧化反應趨勢。
    乙醇氧化反應主要分成兩種反應路徑: (1)斷裂乙醇 C-C 鍵使 12 個電子轉移
    的 C1 路徑以及 (2)氧化乙醇至乙酸產生 4 個電子的 C2 路徑。本研究中會將兩
    種路徑的產物作分析,結果得知在低電位下(-0.9~0.6 V),Pt 3 Ag、Pt 3 Au 在做為觸
    媒具有較高的電流密度,其電氧化效能是最好的。且其 FT-IR 以及 GC 的結果顯
    示這兩種合金主要是以乙酸做為主要產物,推測這兩種合金是趨向 C2 路徑。而
    Pt 3 Rh、Pt 3 Ru 在 GC 的研究中顯示這兩種的 CO 2 產量是最高的,推測這兩種合金
    觸媒對乙醇氧化反應機構主要是走 C1 路徑。Pt 3 Pd、Pt 3 Cu 雖然其電化學效能最
    差,但經由產物分析後得知這兩種合金主要也是 C2 路徑為主。

    In this study, we systematically investigated ethanol oxidation reaction (EOR) on
    the six Pt alloys, Pt 3 Pd, Pt 3 Ag, Pt 3 Rh, Pt 3 Au, Pt 3 Cu and Pt 3 Ru, and pure Pt metals in
    alkaline (KOH) solution. The alloy and metallic electro-catalyst were prepared by the
    ethylene glycol-NaBH 4 reduction method and deposited on Vulcan XC-72. The
    electro-catalyst powders were initially characterized by SEM, EDX and XRD to
    confirm their crystal structures, chemical compositions and particle sizes. The
    electro-catalytic properties of the fabricated samples were further examined by cyclic
    voltammetry (CV) and chronoamperometry(CA). Products from EOR, including CO 2 ,
    CO, CH 3 CHO and CH 3 COOH, on those samples were also studied by in situ FTIR
    and Gas Chromatography (GC). Combining the results from electrochemical
    measurements and product distributions, the mechanism of EOR on Pt-based alloys
    can be thoroughly understood. Our mechanistic results found that Pt 3 Ag and Pt 3 Au
    have better current density and the main products are acetic acid, indicating that EOR
    prefers 4-electron oxidation reaction forming C2 products on those alloys. EOR
    prefers 12-electron oxidation on Pt 3 Ru and Pt 3 Rh in the formation of CO 2 . Pt 3 Cu and
    Pt 3 Pd alloys have the worst electo-oxidation ability and through the pathway for C2
    products.

    Section 1 緒論 1 Section 2 實驗設備以及流程 8 Section 3 結果與討論 23 Section 4 結論 48 Section 5 未來展望 50 Reference 51

    Reference
    1. Grove, W.R., in Philosophical Magazine1839. p. 127-130.
    2. Mann, J., N. Yao, and A.B. Bocarsly, Characterization and Analysis of New Catalysts for a Direct Ethanol Fuel Cell†. Langmuir, 2006. 22(25): p. 10432-10436.
    3. Christensen, P.A., S.W.M. Jones, and A. Hamnett, In Situ FTIR Studies of Ethanol Oxidation at Polycrystalline Pt in Alkaline Solution. The Journal of Physical Chemistry C, 2012. 116(46): p. 24681-24689.
    4. Lai, S.C.S., et al., Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catalysis Today, 2010. 154(1–2): p. 92-104.
    5. Christensen, P.A. and S.W.M. Jones, An in Situ FTIR Study of Ethanol Oxidation at Polycrystalline Platinum in 0.1 M KOH at 25 and 50 °C. The Journal of Physical Chemistry C, 2014. 118(51): p. 29760-29769.
    6. Gao, H., et al., Anodic oxidation of ethanol on core-shell structured Ru@PtPd/C catalyst in alkaline media. Journal of Power Sources, 2011. 196(15): p. 6138-6143.
    7. Souza-Garcia, J., E. Herrero, and J.M. Feliu, Breaking the C-C bond in the ethanol oxidation reaction on platinum electrodes: effect of steps and ruthenium adatoms. Chemphyschem, 2010. 11(7): p. 1391-4.
    8. Velázquez-Palenzuela, A., et al., Carbon monoxide, methanol and ethanol electro-oxidation on Ru-decorated carbon-supported Pt nanoparticles prepared by spontaneous deposition. Journal of Power Sources, 2013. 225(0): p. 163-171.
    9. Camara, G.A., R.B. de Lima, and T. Iwasita, Catalysis of ethanol electrooxidation by PtRu: the influence of catalyst composition. Electrochemistry Communications, 2004. 6(8): p. 812-815.
    10. Maillard, F., et al., Effect of the structure of Pt–Ru/C particles on COad monolayer vibrational properties and electrooxidation kinetics. Electrochimica Acta, 2007. 53(2): p. 811-822.
    11. Spendelow, J.S., et al., Electrooxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media. Journal of Electroanalytical Chemistry, 2004. 568(0): p. 215-224. 52
    12. Souza, J.P.I., et al., Performance of a co-electrodeposited Pt-Ru electrode for the electro-oxidation of ethanol studied by in situ FTIR spectroscopy. Journal of Electroanalytical Chemistry, 1997. 420(1–2): p. 17-20.
    13. Wang, Q., et al., Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: In situ FTIR spectroscopy and on-line DEMS studies. Physical Chemistry Chemical Physics, 2007. 9(21): p. 2686-2696.
    14. Shen, S.Y., T.S. Zhao, and J.B. Xu, Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell. International Journal of Hydrogen Energy, 2010. 35(23): p. 12911-12917.
    15. Sen Gupta, S. and J. Datta, A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits. Journal of Electroanalytical Chemistry, 2006. 594(1): p. 65-72.
    16. de Souza, J.P.I., et al., Electro-Oxidation of Ethanol on Pt, Rh, and PtRh Electrodes. A Study Using DEMS and in-Situ FTIR Techniques. The Journal of Physical Chemistry B, 2002. 106(38): p. 9825-9830.
    17. Lima, F.H.B. and E.R. Gonzalez, Ethanol electro-oxidation on carbon-supported Pt–Ru, Pt–Rh and Pt–Ru–Rh nanoparticles. Electrochimica Acta, 2008. 53(6): p. 2963-2971.
    18. Rao, L., et al., High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation. Phys Chem Chem Phys, 2014. 16(27): p. 13662-71.
    19. Suo, Y. and I.M. Hsing, Highly active rhodium/carbon nanocatalysts for ethanol oxidation in alkaline medium. Journal of Power Sources, 2011. 196(19): p. 7945-7950.
    20. Leão, E.P., et al., Rhodium in presence of platinum as a facilitator of carbon–carbon bond break: A composition study. Electrochimica Acta, 2011. 56(3): p. 1337-1343.
    21. Kowal, A., et al.,Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater, 2009. 8(4): p. 325-330.
    22. Sheng, T., et al., Significance of [small beta]-dehydrogenation in ethanol electro-oxidation on platinum doped with Ru, Rh, Pd, Os and Ir. Physical Chemistry Chemical Physics, 2014. 16(26): p. 13248-13254.
    23. Delime, F., J.M. Léger, and C. Lamy, Enhancement of the electrooxidation of ethanol on a Pt–PEM electrode modified by tin. Part I: Half cell study. Journal of Applied Electrochemistry, 1999. 29(11): p. 1249-1254.
    24. Vigier, F., Development of anode catalysts for a direct ethanol fuel cell. Journal of Applied Electrochemistry, 2004. 34(4): p. 439-446.
    25. Yan, S., et al., Application of Carbon Supported Ptcore–Aushell Nanoparticles 53 in Methanol Electrooxidation. The Journal of Physical Chemistry C, 2014. 118(51): p. 29845-29853.
    26. Qin, Y.-H., et al., Pd-Au/C catalysts with different alloying degrees for ethanol oxidation in alkaline media. Electrochimica Acta, 2014. 144(0): p. 50-55.
    27. Kim, Y., et al., Shape- and Composition-Sensitive Activity of Pt and PtAu Catalysts for Formic Acid Electrooxidation. The Journal of Physical Chemistry C, 2012. 116(34): p. 18093-18100.
    28. Feng, Y.-Y., et al., Dealloyed carbon-supported PtAg nanostructures:Enhanced electrocatalytic activity for oxygen reduction reaction. Electrochemistry Communications, 2010. 12(9): p. 1191-1194.
    29. Xu, J.B., T.S. Zhao, and Z.X. Liang, Synthesis of Active Platinum−Silver Alloy Electrocatalyst toward the Formic Acid Oxidation Reaction. The Journal of Physical Chemistry C, 2008. 112(44): p. 17362-17367.
    30. Kim, P., et al., NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. Journal of Power Sources, 2006. 160(2): p. 987-990.
    31. Zhao, Y., et al., Composition-controlled synthesis of carbon-supported Pt-Co alloy nanoparticles and the origin of their ORR activity enhancement. Phys Chem Chem Phys, 2014. 16(36): p. 19298-306.
    32. Yan, Z., et al., Ethylene glycol stabilized NaBH4 reduction for preparation carbon-supported Pt–Co alloy nanoparticles used as oxygen reduction electrocatalysts for microbial fuel cells. Journal of Solid State Electrochemistry, 2014. 18(4): p. 1087-1097.
    33. García, G., et al., Ethanol oxidation on PtRuMo/C catalysts: In situ FTIR spectroscopy and DEMS studies. International Journal of Hydrogen Energy, 2012. 37(8): p. 7131-7140.
    34. Bozzini, B., G.P. De Gaudenzi, and A. Tadjeddine, In situ spectroelectrochemical measurements during the electro-oxidation of ethanol on WC-supported Pt-black. Part II: Monitoring of catalyst aging by in situ Fourier transform infrared spectroscopy. Journal of Power Sources, 2010. 195(24): p. 7968-7973.
    35. Ryczkowski, J., IR spectroscopy in catalysis. Catalysis Today, 2001. 68(4): p. 263-381.
    36. Vigier, F., et al., On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. Journal of Electroanalytical Chemistry, 2004. 563(1): p. 81-89.
    37. Buso-Rogero, C., et al., Surface structure and anion effects in the oxidation of ethanol on platinum nanoparticles. Journal of Materials Chemistry A, 2013. 1(24): p. 7068-7076.
    38. Zhou, Z.-Y., et al., In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochimica Acta, 2010. 55(27): p. 7995-7999.
    39. Modibedi, R.M., T. Masombuka, and M.K. Mathe, Carbon supported Pd–Sn and Pd–Ru–Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. International Journal of Hydrogen Energy, 2011. 36(8): p. 4664-4672.
    40. Jin, J.M., et al., The origin of high activity but low CO(2) selectivity on binary PtSn in the direct ethanol fuel cell. Phys Chem Chem Phys, 2014. 16(20): p. 9432-40.
    41. Beyhan, S., et al., Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline media. Journal of Electroanalytical Chemistry, 2013. 707(0): p. 89-94.
    42. Cui, G., et al., First-Principles Considerations on Catalytic Activity of Pd toward Ethanol Oxidation. The Journal of Physical Chemistry C, 2009. 113(35): p. 15639-15642.

    下載圖示
    QR CODE