研究生: |
林韋如 Lin, Wei-Ju |
---|---|
論文名稱: |
氧化鏑鋅薄膜的法拉第磁光與電性 Magneto-Optical Faraday effect and Electric Properties of Dy-doped ZnO Thin Films |
指導教授: |
駱芳鈺
Lo, Fang-Yuh |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 氧化鋅 、鏑 、薄膜 、脈衝雷射沉積法 、法拉第磁光 、電性 |
英文關鍵詞: | zinc oxide, Dysprosium, thin film, pulsed-laser deposition, Magneto-Optical Faraday effect, electric property |
DOI URL: | http://doi.org/10.6345/NTNU202100301 |
論文種類: | 學術論文 |
相關次數: | 點閱:211 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以脈衝雷射蒸鍍法在c方向藍寶石基板上製備氧化鏑鋅薄膜,並討論其結構、光學、磁光與電性特性。分析X光繞射光譜與拉曼光譜,並沒有產生其他晶相,隨摻雜濃度增加,晶粒尺寸變小,晶格常數變化不大。光致螢光光譜顯示,純氧化鋅有很強的近能隙發光,隨摻雜濃度增加,近能隙發光強度漸弱,缺陷發強度增強,主要缺陷為氧空缺、鋅空缺與鋅間隙。磁光光譜可看出,所有薄膜呈順磁性,與SQUID量測結果相同,Verdet constant大致隨波長增長而漸弱;其中缺陷所對應的發光波長,Verdet constant 與摻雜比例做圖,摻雜濃度10%響應為最強。量測電流-電壓曲線圖得知所有電極都為歐姆接觸。使用Van der Pauw法量測氧化鏑鋅薄膜的電阻率數值在0.078 mΩ·cm與277.72 mΩ·cm之間。霍爾效應檢測顯示氧化鋅為n型半導體,1%及5%的氧化鏑鋅薄膜為p型半導體,載子濃度在7.89×1018 cm-3與5.32×1022 cm-3之間,遷移率在4.3×10-4 cm2/Vs與35.13 cm2/Vs之間。
Dysprosium-doped zinc oxide (Dy:ZnO) thin films are grown by pulsed-laser deposition on c-oriented sapphire substrate and their structural, optical, magneto-optical, and electrical properties at room temperature are discussed. The x-ray diffraction and Raman scattering analysis confirm the wurtzite structure of ZnO without secondary phase. With the Dy dopant concentration increasing, grain size becomes smaller while c-lattice constant does not change much. In photoluminescence spectra, ZnO shows strong near band edge (NBE) emission. The NBE luminous intensity decreases and the defect intensity increases when Dy concentration increases. The main defects are oxygen vacancy (VO), zinc vacancy (VZn) and zinc interstitial (Zni). Study of the magneto-optical Faraday effect spectra shows that all the thin films are paramagnetic, which is the same from SQUID measurement. Verdet constant of Dy:ZnO thin films decrease with increasing wavelength. When analyzing the spectra of defects, take the zinc interstitial as an example, the Verdet constant becomes larger with an increase of Dy concentration. I-V curves show all Dy:ZnO thin films having ohmic contact. Van der Pauw method was used to measure the resistivity of Dy:ZnO thin films and the values are between 0.078 mΩ·cm and 277.72 mΩ·cm. Hall effect measurements shows that pure ZnO thin film is an n-type semiconductor, and Dy:ZnO thin films with 1 and 5 at.% are p-type semiconductors. The carrier density is between 7.89×1018 cm-3 and 5.3×1022 cm-3, and the mobility is between 4.3×10-4 cm2/Vs and 35.15 cm2/Vs.
[1]. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Physical Review Letters, 61, 2472 (1988).
[2]. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Physical Review B, 39, 4828 (1989).
[3]. 胡裕民, III-V 稀磁性半導體薄膜之研究與發展, 物理雙月刊, 廿六卷四期, 587 (2004).
[4]. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Physical Review Letters, 50, 2024 (1983).
[5]. S. M. Watts, S. Wirth, S. von Molnár, A. Barry, and J. M. D. Coey, Physical Review B, 61, 9621 (2000).
[6]. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature, 392, 794, (1998).
[7]. J. J. Versluijs, M. A. Bari, J. M. D. Coey, Physical Review Letters, 87, 026601 (2001).
[8]. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature. 395, 677 (1999).
[9]. R. P. Borges, R. M. Thomas, C. Cullinan, J. M. D. Coey, R. Suryanarayanan, L. Ben-Dor, L. Pinsard-Gaudart and A. Revcolevschi, Journal of Physics: Condensed Matter, 11, L445 (1999).
[10]. R. N. Aljawfi, S. Mollah, Journal of Magnetism and Magnetic Materials, 323, 126 (2011).
[11]. 駱芳鈺 台灣磁性技術技術協會會訊,50.
[12]. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science, 287, 1019 (2000).
[13]. 王詩茵, 稀磁性ZnO透明導電薄膜的發展 (2016).
[14]. S. Blundell, “Magnetism in Condensed Matter” (2001).
[15]. F. Y. Lo, Y. C. Ting, K. C. Chou, T. C. Hsieh, C. W. Ye, Y. Y. Hsu, M. Y. Chern, and H. L. Liu, Journal of Applied Physics, 117, 213911 (2015).
[16]. M. Akyol, A. Ekicibil, T. Fırat, and K. Kıymaç, Journal of Superconductivity and Novel Magnetism, 26, 2439 (2013).
[17]. A. Bandyopadhyay, S. Modak, S. Acharya, A. K. Deb, and P. K. Chakrabartia, Solid State Sciences, 26 (2013).
[18]. T. Minami, S. Ida, T. Miyata, and Y. Minamino, Thin Solid Films, 445, 268 (2003).
[19]. S. Bloom, and I. Ortenburger, Physica Status Solidi b, 58, 561 (1973).
[20]. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkoç, Journal of Applied Physics, 98, 041301 (2005).
[21]. J. H. Van Vleck, “The Theory of Electric and Magnetic Susceptibilities” (1985).
[22]. Y. Z. Liu, M. J. Ying, X. L. Du, J. F. Jia, Q. K. Xue, X. D. Han, and Z. Zhang, Journal of Crystal Growth, 290, 631 (2006).
[23]. A. Behera, P. Mallick, and S. S. Mohapatra, “Corrosion Protection at the Nanoscale” (2020).
[24]. S. Li, Y. Ge, S. A. Piletsky, and J. Lunec, “Molecularly Imprinted Sensors” (2012).
[25]. “Pulsed laser deposition of thin films” (2007).
[26]. K.H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière, “Encyclopedia of Materials: Science and Technology” (2001)
[27]. N. Kasai, M. Kakudo, “X-Ray Diffraction by Macromolecules” (2005).
[28]. B. D. Cullity, “Elements of X-ray diffraction” (1956)
[29]. K. D. Mielenz, “Optical Radiation Measurements” (1982)
[30]. J. H. Simmons and K. S. Potter, “Optical Materials” (2000).
[31]. P. Misra, U. Behn, O. Brandt, and H. T. Grahn, Applied Physics Letters, 88, 161920 (2002).
[32]. J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, Progress in Materials Science, 58, 874 (2013).
[33]. A. H. Kitai, “Solid State Luminescence” (1993).
[34]. S. Thomas, R. Thomas, A. K. Zachariah and R. K. Mishra, “Spectroscopic Methods for Nanomaterials Characterization” (2017).
[35]. S. Thomas, R. Thomas, A. K. Zachariah and R. K. Mishra, “Thermal and Rheological Measurement Techniques for Nanomaterials Characterization” (2017).
[36]. C. V. Raman, The New Physics, Philosophical Library (1951).
[37]. G. Amira, B. Chaker, and E. Habib, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 177, 164 (2017).
[38]. J. Q. Yu, L. Cui, H. Q. He, S. H. Yan, Y. S. Hu and H. Wu, Journal of Rare Earths, 32, 1 (2014).
[39]. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M. J. Callahan, Physical Review B, 75, 165202 (2007).
[40]. Callister, W.D., "Magnetic Properties" (1997).
[41]. B. D. Cullity, “Introduction to Magnetic Materials” (1972).
[42]. D. K. Cheng, “Field and Wave Electromagnetics” (1989).
[43]. P. Bhattacharya, R. Fornari, and H, Kamimura, “Comprehensive Semiconductor Science and Technology” (2011).
[44]. D. A. Neamen, “Semiconductor Physics and devices” (2012).
[45]. E. H. Hall, American Journal of Mathematics, 2, 287 (1897).
[46]. S. Oh, Science, 340, 153 (2013).
[47]. E. H. Hall, Philosophical Magazine, 10, 301 (1880).
[48]. H. Ohno, H. Munekata, T. Penney, S. von Molnár, and L. L. Chang, Physical Review Letters, 68, 2664 (1992).
[49]. F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Physical Review B, 57, R2037 (1998).
[50]. M. I. Dyakonov, and V. I. Perel, Physics Letters A, 35, 459 (1971).
[51]. J. E. Hirsch, Physical Review Letters. 83, 1834 (1999).
[52]. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science, 306, 1910 (2004).