研究生: |
周睿歆 Chou, Jui-Hsin |
---|---|
論文名稱: |
三種附生蕨類個體大小與生理生態的關係 The Relationship between Size and Ecophysiology of Three Epiphytic Fern Species |
指導教授: |
林登秋
Lin, Teng-Chiu |
口試委員: |
林登秋
Lin, Teng-Chiu 江智民 Chiang, Jyh-Min 黃盟元 Huang, Meng-Yuan |
口試日期: | 2025/01/21 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 附生植物 、生理生態學 、氣體交換 、光合作用 、植物體型 、光反應曲線 、氣孔大小 、氣孔密度 、葉綠素濃度 、鐵角蕨屬 |
英文關鍵詞: | Epiphytes, Ecophysiology, Gas Exchange, Photosynthesis, Plant Size, Light Response Curve, Stomatal Size, Stomatal Density, Chlorophyll Concentration, Aspelnium |
研究方法: | 實驗設計法 、 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202500365 |
論文種類: | 學術論文 |
相關次數: | 點閱:29 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物的生理生態可反應生長、健康和繁殖等狀況,常用以探討植物如何應對環境變化。然而,先前的研究中,常忽略植物個體體型大小與生理生態之間的關係,這可能影響了種間生理差異的比較結果。本研究在臺灣東北部的福山試驗林對三種常見的附生蕨類:巢蕨 (Asplenium antiquum Makino)、垂葉書帶蕨 (Haplopteris zosterifolia Willd.) 和腎蕨 (Nephrolepis auriculata (L.) Trimen) 探討以下二個問題:(1) 三種附生蕨類物種體型差異和生理生態,包含光合作用速率、蒸散速率、氣孔導度、葉內二氧化碳濃度 (Ci) 、氣孔大小、氣孔密度、葉綠素濃度和葉綠素a/b之間的關係為何?(2) 個體體型大小與生理生態的關係在三個物種間是否一致?研究結果發現,巢蕨和腎蕨體型大小與光合作用速率、蒸散速率、氣孔導度和氣孔大小有負向關係的趨勢,垂葉書帶蕨體型大小則與這些生理生態參數有正向的關係。三物種氣孔密度與氣孔大小皆呈現負向關係。巢蕨個體大小與葉綠素濃度呈顯著正向關係,腎蕨個體大小與葉綠素濃度為顯著負向關係,在垂葉書帶蕨這些關係則不顯著。體型大小和 Ci 的闗係在三者皆不顯著。總結來說,體型大小和生理生態的關係在三物種間不具一致性,這顯示在進行物種間生理生態比較時需考量體型大小可能的影響。將本研究的巢蕨和前人對另外二種同屬 (鐵角蕨屬) 附生植物的研究結果相比,也發現個體大小與生理生態的關係在三個物種間亦無一致的趨勢,這顯示親緣關係應非主導體型大小和生理生態之間闗係最重要的因子。本研究為觀察性研究雖指出體型大小對生理生態的影響在不同附生植物間無一致的現象,但尚無法明確指出其影響的機制,仍需更多研究加以釐清。
Because plant ecophysiology can reflect plant growth, health, and reproduction condition, it is often used to explore how plants adapt to environmental changes. However, previous studies have often overlooked the relationship between plant size and ecophysiology, which may have influenced the results in comparing physiological differences between species. This study, conducted in the Fushan Experimental Forest in northern Taiwan, investigated three common epiphytic fern species—Asplenium antiquum Makino, Haplopteris zosterifolia Willd., and Nephrolepis auriculata (L.) Trimen. The study aimed to address the following two questions: (1) Does the size difference of the epiphytic fern species significantly affect their ecophysiological traits, including photosynthetic rate, transpiration rate, stomatal conductance, and internal CO2 concentration (Ci), stomatal size, stomatal density, chlorophyll concentration, and chlorophyll a/b ratio? (2) Are the relationships between size and ecophysiological traits consistent across the three species? The study found that for A. antiquum and N. auriculata, plant size was negatively related to photosynthetic rate, transpiration rate, stomatal conductance, and stomatal size, whereas H. zosterifolia exhibited the opposite trend. The stomatal density was negatively related to stomatal size across the three species. Regarding the relationship between plant size and chlorophyll concentration as well as chlorophyll a/b ratio, A. antiquum showed a significant positive relationship with plant size and chlorophyll concentration, while N. auriculata showed a significant negative relationship, and H. zosterifolia showed no significant relationship. No significant relationship between body size and internal CO2 concentration (Ci) was found in any of the three species. In summary, the results of the ecophysiology traits were not consistent across the three species. Comparing the result of this study with two previous studies on two Aspleniun species, it is found that even among the three closely related Asplenium species, plant size influenced their ecophysiological traits differently. This suggests that phylogenetic relationships do not play a dominant role in determining the relationship between plant size and ecophysiology. Although this observational study points to the lack of consistency in the effect of plant size on ecophysiology among different epiphytic plants, the underlying mechanisms remain unclear and deserves further investigations.
全中和。(2000)。山蘇蕨菜栽培技術。花蓮區農業專訊, 34, 9-11。https://www.hdares.gov.tw/upload/hdares/files/web_structure/792/bull-34_9-11.pdf
郭城孟。(2001)。蕨類觀察圖鑑。台北市:遠流出版。
經濟部水利署。(無日期)。福山植物園雨量站。福山植物園水文資訊網。(擷取於2024年12月30日)https://gweb.wra.gov.tw/HydroInfo/StDataInfo/StDataInfo?RA&O1U88
福山植物園。緣起與發展。(擷取於2024年12月30日) https://fushan.tfri.gov.tw/history.php
Adams, W.W., & Martin, C.E. (1986). Physiological consequences of changes in life form of the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). Oecologia, 70, 298–304. https://doi.org/10.1007/BF00379255
Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO_2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties, and plant production to rising CO_2. New Phytologist, 165(2), 351-372. https://doi.org/10.1111/j.1469-8137.2004.01224.x
Ainuddin, N. A., & Najwa, D. N. (2009). Growth and Physiological Responses of Asplenium nidus to Water Stress. Asian Journal of Plant Sciences, 8(6), 447-450. https://doi.org/10.3923/ajps.2009.447.450
Attorre, F., Francesconi, F., Scarnati, L., De Sanctis, M., Alfò, M., & Bruno, F. (2008). Predicting the effect of climate change on tree species abundance and distribution at a regional scale. iForest - Biogeosciences and Forestry, 1(4), 132. https://doi.org/10.3832/ifor0467-0010132
Benzing, D. H. (1990). Vascular Epiphytes Cambridge University Press. New York, NY, 147.
Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., ... & De Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20(1), 30-59. https://doi.org/10.1890/08-1140.1
Cach-Pérez, M. J., Andrade, J. L., & Reyes-García, C. (2018). Morphophysiological plasticity in epiphytic bromeliads across a precipitation gradient in the Yucatan peninsula, Mexico. Tropical Conservation Science, 11, 1940082918781926. https://doi.org/10.1177/1940082918781926
Condon, A. G., Richards, R. A., Rebetzke, G. J., & Farquhar, G. (2002). Improving intrinsic water-use efficiency and crop yield. Crop Science, 42(1), 122-131. https://doi.org/10.2135/cropsci2002.1220
Day, M. E., Greenwood, M. S., & Diaz-Sala, C. (2002). Age-and size-related trends in woody plant shoot development: Regulatory pathways and evidence for genetic control. Tree Physiology, 22(8), 507-513. https://doi.org/10.1093/treephys/22.8.507
Dittberner, H., Korte, A., Mettler-Altmann, T., Weber, A. P., Monroe, G., & de Meaux, J. (2018). Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana. Molecular Ecology, 27(20), 4052-4065. https://doi.org/10.1111/mec.14838
Díaz, I. A., Sieving, K. E., Pena-Foxon, M. E., Larraín, J., & Armesto, J. J. (2010). Epiphyte diversity and biomass loads of canopy emergent trees in Chilean temperate rain forests: A neglected functional component. Forest Ecology and Management, 259(8), 1490-1501. https://doi.org/10.1016/j.foreco.2010.01.025
Doheny-Adams, T., Hunt, L., Franks, P. J., Beerling, D. J., & Gray, J. E. (2012). Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588), 547-555. https://doi.org/10.1098/rstb.2011.0272.
Engwald, S. (1999). Ökologie und Diversität der Epiphyten eines Tiefland- und eines Bergregenwalds in Venezuela. Libri-Books on Demand.
Enquist, B. J., Kerkhoff, A. J., Stark, S. C., Swenson, N. G., McCarthy, M. C., & Price, C. A. (2007). A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature, 449(7159), 218-222. https://doi.org/10.1038/nature06061
Farquhar, G. D., & Sharkey, T. D. (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33(1), 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533
Franks, P. J., Drake, P. L., & Beerling, D. J. (2009). Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis using Eucalyptus globulus. Plant, Cell & Environment, 32(12), 1737-1748. https://doi.org/10.1111/j.1365-3040.2009.002031.x
Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424(6951), 901-908. https://doi.org/10.1038/nature01843
Hsu, C. C. (2007). The vascular epiphytes in Taiwan – a review. Journal of Experimental Forests National Taiwan University, 21(2), 161-180.
Hsu, C. C., Horng, F. W., & Kuo, C. M. (2002). Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology, 18(5), 659-670.
http://www.jstor.org/stable/3068744
Jaikumar, N. S., Stutz, S. S., Fernandes, S. B., Leakey, A. D. B., Bernacchi, C. J., Brown, P. J., & Long, S. P. (2021). Can improved canopy light transmission ameliorate loss of photosynthetic efficiency in the shade? An investigation of natural variation in Sorghum bicolor. Journal of experimental botany, 72(13), 4965–4980. https://doi.org/10.1093/jxb/erab176
Knops, J. M. H., Nash, T. H., & Schlesinger, W. H. (1996). The influence of epiphytic lichens on the nutrient cycling of an oak woodland. Ecological Monographs, 66, 159–179.
https://doi.org/10.2307/2963473
Kreft, H., Köster, N., Küper, W., Nieder, J., & Barthlott, W. (2004). Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. Journal of Biogeography, 31(9), 1463-1476. https://doi.org/10.1111/j.1365-2699.2004.01083.x
Kress, W. J. (1986). The systematic distribution of vascular epiphytes: An update. Selbyana, 9, 2–22.
Kitajima, K., & Hogan, K. P. (2003). Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant, Cell & Environment, 26(6), 857-865. https://doi.org/10.1046/j.1365-3040.2003.01017.x
Long, S. P., Postl, W. F., & Bolhár-Nordenkampf, H. R. (1993). Quantum yields for uptake of carbon dioxide in C_3 vascular plants of contrasting habitats and taxonomic groupings. Planta, 189(2), 226–234. https://doi.org/10.1007/BF00195081
Lu, H. Z., Song, L., Liu, W. Y., Xu, X. L., Hu, Y. H., Shi, X. M., ... & Yu, F. H. (2016). Survival and growth of epiphytic ferns depend on resource sharing. Frontiers in Plant Science, 7, 416. https://doi.org/10.3389/fpls.2016.00416
Martin, C. E., Lin, T. C., Hsu, C. C., Lin, S. H., Lin, K. C., Hsia, Y. J., & Chiou, W. L. (2004). Ecophysiology and plant size in a tropical epiphytic fern, Asplenium nidus, in Taiwan. International Journal of Plant Sciences, 165(1), 65-72. https://doi.org/10.1086/380982
Nadkarni, N. M., Schaefer, D., Matelson, T. J., & Solano, R. (2004). Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management, 198, 223–236. https://doi.org/10.1016/j.foreco.2004.04.011
Nowicki, C. (1998). Diversität epiphytischer und terrestrischer Pflanzen eines ecuadorianischen Bergnebelwaldes im Vergleich (Unpublished diploma thesis). Botanisches Institut, Universität Bonn, Bonn, Germany.
Ohsumi, A., Kanemura, T., Homma, K., Horie, T., & Shiraiwa, T. (2007). Genotypic variation of stomatal conductance in relation to stomatal density and length in rice (Oryza sativa L.). Plant Production Science, 10(3), 322-328. https://doi.org/10.1626/pps.10.322
Ouyang, W., Struik, P. C., Yin, X., & Yang, J. (2017). Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experimental Botany, 68(18), 5191-5205.
https://doi.org/10.1093/jxb/erx314
Richardson, B. A., Richardson, M. J., Scatena, F. N., & McDowell, W. H. (2000). Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. Journal of Tropical Ecology, 16, 167–188. https://doi.org/10.1017/S0266467400001346
Roiloa, S. R., Antelo, B., & Retuerto, R. (2014). Physiological integration modifies δ^15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring. Annals of Botany, 114(2), 399-411. https://doi.org/10.1093/aob/mcu064
Saldana, A., Lusk, C. H., Gonzáles, W. L., & Gianoli, E. (2007). Natural selection on ecophysiological traits of a fern species in a temperate rainforest. Evolutionary Ecology, 21, 651-662. https://doi.org/10.1007/s10682-006-9143-7
Saldana, A. O., Hernandez, C., Coopman, R. E., Bravo, L. A., & Corcuera, L. J. (2010). Differences in light usage among three fern species of genus Blechnum of contrasting ecological breadth in a forest light gradient. Ecological Research, 25, 273-281. https://doi.org/10.1007/s11284-009-0656-8
Schmidt, G., & Zotz, G. (2001). Ecophysiological consequences of differences in plant size—in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea sanguinolenta. Plant, Cell & Environment, 24, 101–112. https://doi.org/10.1046/j.1365-3040.2001.00658.x
Schmidt, G., Stuntz, S., & Zotz, G. (2001). Plant size—an ignored parameter in epiphyte ecophysiology. Plant Ecology, 153, 65–72. https://www.jstor.org/stable/20051047
Stanton, D. E., Huallpa Chávez, J., Villegas, L., Villasante, F., Armesto, J., Hedin, L. O., & Horn, H. (2014). Epiphytes improve host plant water use by microenvironment modification. Functional Ecology, 28(5), 1274-1283. https://doi.org/10.1111/1365-2435.12249
Testo, W. L., & Watkins Jr, J. E. (2012). Influence of plant size on the ecophysiology of the epiphytic fern Asplenium auritum (Aspleniaceae) from Costa Rica. American Journal of Botany, 99(11), 1840-1846. https://doi.org/10.3732/ajb.1200329
Taiwan Forestry Research Institute (TFRI). (1989). A list of native plants of Fushan Experimental Forest. Taipei, Taiwan: Taiwan Forestry Research Institute.
Tichá, I. (1982). Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica, 16, 375-471.
Tsai, Y. C., Wang, L., Wang, C. P., & Lin, T. C. (2023). Distinct epiphyte responses to drought in tropical mountain cloud forests. Ecohydrology, 16(7), e2569. https://doi.org/10.1002/eco.2569
Vanderklein, D., Martinez-Vilalta, J., Lee, S., & Mencuccini, M. (2007). Plant size, not age, regulates growth and gas exchange in grafted Scots pine trees. Tree Physiology, 27(1), 71-79. https://doi.org/10.1093/treephys/27.1.71
Weyers, J. D. B., & Lawson, T. (1997). Heterogeneity in stomatal characteristics. Advances in Botany Research, 26, 317–352. https://doi.org/10.1016/S0065-2296(08)60124-X
Weyers, J. D. B., Lawson, T., & Peng, Z. (1997). Variation in stomatal characteristics at the whole leaf level. In P. van Gardingen, G. Foody, & P. Curran (Eds.), Scaling up: Society for experimental biology seminar series (pp. 129–149). Cambridge University Press.
Wong, S. L., Chen, C. W., Huang, H. W., & Weng, J. H. (2012). Using combined measurements of gas exchange and chlorophyll fluorescence to investigate the photosynthetic light responses of plant species adapted to different light regimes. Photosynthetica, 50, 206-214.
https://doi.org/10.1007/s11099-012-0027-5
Xu, Z., & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59(12), 3317-3325. https://doi.org/10.1093/jxb/ern185
Zotz, G., & Ziegler, H. (1999). Size-related differences in carbon isotope discrimination in the epiphytic orchid, Dimerandra emarginata. Naturwissenschaften, 86, 39-40.
Zotz, G. (2016). Plants on plants—the biology of vascular epiphytes (Vol. 15, p. 282). Cham: Springer International Publishing.
Zotz, G., Schmidt, G., & Mikona, C. (2011). What is the proximate cause for size‐dependent ecophysiological differences in vascular epiphytes? Plant Biology, 13(6), 902-908.
https://doi.org/10.1111/j.1438-8677.2011.00460.x
Zvereva, E. L., & Kozlov, M. V. (2012). Changes in the abundance of vascular plants under the impact of industrial air pollution: A meta-analysis. Water, Air, & Soil Pollution, 223, 2589–2599. https://doi.org/10.1007/s11270-011-1050-z