研究生: |
曾暄君 Hsuan-Chun,Tseng |
---|---|
論文名稱: |
以磁光科爾效應及鐵磁共振研究鈷鐵硼銅薄膜磁性行為 Studies Magnetic Behavior of CoFeBCu Films by means of MOKE and FMR |
指導教授: |
盧志權
Lo, Chi-Kuen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 鈷鐵硼 、鐵磁共振 、磁光科爾效應 、共濺鍍 |
論文種類: | 學術論文 |
相關次數: | 點閱:162 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁控式共濺鍍(Co40Fe40B20)1-xCux薄膜成長於SiO2/Si(100)基板上,總厚度40nm的薄膜x從0至44%,而50nm的則從0至68%;樣品的比例成份及縱深分佈分別用X射線光電子能譜及二次離子質譜來分析,薄膜樣品的表貌則使用原子力顯微鏡來檢測;樣品的磁性行為則是用MOKE與FMR來測量。40nm薄膜的表面平均粗糙度為0.4-1.7nm,銅比例在15-37%範圍間,粗糙度與晶粒大小隨銅比例增加而提高,當銅增加至44%時,粗糙度與晶粒尺寸開始下降;從X射線繞射(XRD)數據得知參雜銅於鈷鐵硼中具有非晶態結構,但當銅增加至66%時XRD在2θ=43.5°出現微弱Cu(111)訊號。
使用縱向磁光科爾儀量測磁滯曲線,發現參雜些微的銅在薄膜平面上出現磁異向性,並以鐵磁共振儀量測微波訊號下共振磁場位置,數據顯示磁易軸矯頑場(Hc)以及角度0°的共振磁場(Hres)皆隨著銅比例增加而降低,40nm銅比例從0升高至44%,Hc從106降低為37.5Oe,Hres從10.8降至7.5KOe,50nm銅從0增加至68%,Hc從105降低為13Oe,Hres從12.5降至5.5KOe,矯頑場降低的原因是銅比例增加使鐵磁物質含量變少,造成鐵磁物質間交換耦合變弱,這與共振磁場隨銅比例增加導致材料內鐵磁耦合減弱而降低的結果一致。
鈷鐵硼銅的阻尼常數,40nm薄膜阻尼常數介於0.010-0.019的範圍,50nm薄膜阻尼常數為0.008-0.017,比預期的阻尼常數相比有偏高的趨勢,推測是參雜銅造成薄膜不同區域地磁矩進動方向與頻率的不一致,導致阻尼常數提高。
[1] 葉林秀、李佳謀、徐明豐、吳德和(2004)。《磁阻式隨機存取記憶體技術的發展
─現在與未來》。物理雙月刊(廿六卷四期),pp.607-619
[2] David D. Djayaprawira, Koji Tsunekawa, Motonobu Nagai et al.,“230% room-temperature magnetoresistance in CoFeB/Mgo/CoFeB magnetic tunnel junctions,”Appl. Phys. Lett., 86, 092502, 2005
[3] S. Ikeda, J. Hayakawa, Y. Ashizawa et al., “Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB/Mgo/CoFeB pseudo-spin-valves annealed at high temperature,”Appl. Phys. Lett. ,93, 082508 , 2008
[4] Shigemi Mizukami, Yasuo Ando and Terunobu Miyazaki, “The Study on Ferromagnetic Resonance Linewidth for NM/80NiFe/NM (NM=Cu,Ta,Pd and Pt) Films,”Jpn. J. Appl. Phys., 40, pp. 580-585, 2001
[5] Mikihiko Oogane, Takeshi Wakitani, Satoshi Yakata et al., “Magnetic Damping in Ferromagnetic Thin Films,”Jpn. J. Appl. Phys., 45 , pp. 3889-3891, 2006
[6] Platt, C.L, Minor, M.K. ,Klemmer, Timothy J, “Magnetic and Structural Properties of FeCoB Thin Films,” IEEE Trans. Magnetics., vol.37 , Issue: 4 , pp.2302 - 2304
[7] David A.Neamen (2003)。《半導體物理與元件》。楊賜麟。台中:滄海書局pp.2
[8] Hong Xiao (2001)。《半導體製程技術導論》。羅正忠、張鼎張。台北:學銘圖書pp.91
[9] 李景明、張慶瑞。《磁性技術手冊》第二章磁學原理簡介。中華民國磁性技術協會。
pp.24
[10] J. S. Kouvel and R. H. Wilson, “Magnetization of Iron-Nickel Alloys Under Hydrostatic Pressure,”J. Appl. Phys., 32, 435, 1961
[11] A.H.Morrish,“The Physical Principles of magnetism,”John Wiley&Sons, New York, pp.35 , 1965
[12] Bloch walls. Magnetism, Magnetic domains. Molecular and Solid State Physics, Graz University of Technology.http://lamp.tu-graz.ac.at/~hadley/ss1/problems/heisenberg/Q.php
[13] B.D. Cullity,C.D.Graham, “Introduction to Magnetic Materials,” John Wiley&Sons New York, pp.279 , 2009
[14] Mathias Getzlaff,“Fundamentals of Magnetism,”Springer Berlin Heidelberg New York, pp.90-104, 2008
[15] Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,”Rev. Sci. Instrum. 71, 1243 , 2000
[16] J.M.D.COEY,“Magnetism and Magnetic Materials,”Cambridge University Press, pp.70 ,pp.316, 2009
[17] Edited by S.V.Vonsovskii, “Ferromagnetic resonance; the phenomenon of resonant absorption of a high-frequency magnetic field in ferromagnetic substances,” Oxford, New York, Pergamon Press, pp.19-22, 1966
[18] Hans Harcken,“Ferromagnetic precession,”Physikalisch-Technische Bundesanstalt, 2011
[19] GilbertL.Thomas,“A Phenomenological Theory of Damping in Ferromagnetic Materials,”IEEE Trans. Magnetics, vol.40 , Issue: 6 , pp.3443 – 3449, 2004
[20] 儀器總覽6表面分析儀器, 1 (1998)
[21] D.BRIGGS,M.P.SEAH,“Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy,” John Wiley&Sons, pp.98-101,pp.494-495, 1983
[22] 張立信。《表面化學分析技術》。奈米通訊.NANO COMMUNICATION (19卷No.4.
主題文章3), pp.17-23
[23] 田春生、簡翰中。《SIMS(二次離子質譜)在化合物半導體材料分析中的應用》。半導
體科技 No.63 (2006)
[24] Eugene Hecht,“Optics,”Addison Wesley, pp.348-349, 2002
[25] Patton, Carl E. and Nan Mo,“Appendix F: FMR Linewidth Measurements,” Colorado State University.
[26] I.F.Ferguson ,“Auger Microprobe Analysis,”Adam Hilger, Bristol and New York, pp.28, 1989
[27] Roger Smart, Stewart McIntyre, Mike et al.,“X-ray Photoelectron Spectroscopy,”Department of Physics and Materials Science, City University of Hong Kong,http://mmrc.caltech.edu/SS_XPS/XPS_PPT/XPS_Slides.pdf
[28] TOF-SIMS, tasconGmbH analytical services& consulting, Heisenbergstr, 15 • 48149Münster http://www.tascon.eu/media/en/analytcal%20methods/ToF-SIMS-E.pdf
[29] 潘扶民。《二次離子質譜術與超淺接面分析》。NDL通訊-奈米通訊期刊(第
五卷第三期)
[30] Pinshane Y. Huang, J. C. Read, and R. A. Buhrman, “X-Ray Diffraction of Magnetic Tunnel Junctions,”2007
[31] Y.T.Chen and S.M.Xie , “Magnetic and electric properties of amorphous Co40Fe40B20 thin films,”Journal of Nanomaterials vol.2012, 2012
[32] C. Suryanarayana, M. Grant Norton , “X-Ray Diffraction: A Practical Approach,”Springer, pp.21, 1998
[33] Y.-P. Zhao, R. M. Gamache, G.-C. Wang et al, “Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity,”J. Appl. Phys., 89, 1325 , 2001
[34] J. Ebothe, S. Vilain, M. Troyon, “Surface roughness and composition effects on the magnetic properties of electrodeposited Ni-Co alloys,” Journal of Magnetism and Magnetic Materials, vol. 157, pp. 274-275, 1996
[35] Lisa Tauxe, H. Neal Bertram and Christian Seberino,“Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetite,”Geochemistry, Geophysics, Geosystems vol. 3, Issue 10 ,pp.1-22, 2002
[36] Xiaoyong Liu, Wenzhe Zhang, Matthew J. Carter et al,“Ferromagnetic resonance and damping properties of CoFeB thin films as free layers in MgO-based magnetic tunnel junctions,” J. Appl. Phys., 110, 033910 , 2011
[37] Yaping Zhang, Xin Fan,Weigang Wang et al,“Study and tailoring spin dynamic properties of CoFeB during rapid thermal annealing,” Appl. Phys. Lett., 98, 042506 , 2011