簡易檢索 / 詳目顯示

研究生: 林秉衡
Lin, Ping-Heng
論文名稱: 以邏輯閘建構全細胞生物感測器檢測銅離子
Development of Whole-cell biosensors based on Logic Gate to Detect Copper ion
指導教授: 葉怡均
Yeh, Yi-Chun
口試委員: 杜玲嫻
Tu, Ling-Hsien
蔡伸隆
Tsai, Shen-Long
葉怡均
Yeh, yi-chun
口試日期: 2023/06/27
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 118
中文關鍵詞: 全細胞生物感測器重金屬調控系統邏輯閘重組蛋白耐金屬貪銅菌大腸桿菌銅離子T7 RNA聚合酶
英文關鍵詞: Whole-Cell Biosensors (WCBs), Regulatory Systems, Metals, Logic Gate, Recombinant Proteins, Cupriavidus metallidurans,, E. coli, Copper ions
研究方法: 實驗設計法行動研究法準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300979
論文種類: 學術論文
相關次數: 點閱:127下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全細胞生物感測器是利用細菌作為感測器主體,透過基因工程技術,藉由賦予它不同調控基因組,使之具有檢測特定待測物的能力,其具有操作方便、價格低廉,對環境污染低等優點,使全細胞生物感測器越來越蓬勃發展。本論文是利用耐金屬貪銅菌 (Cupriavidus metallidurans, C. metallidurans) 作為宿主細菌,並且融入邏輯閘中的AND gate概念設計質體,希望利用兩個啟動子PCopA (Cu2+、Zn2+、Cd2+) 與PCopZ (Cu2+、Au3+、Ag+) 之間的交集,提高對銅離子的專一性,並且使用了Spy Tag/Catcher黏合標籤,提高重組sfCherry3C(1-10)、sfCherry3C(11)的效率以及重組T7 RNA聚合酶 (拆成C-T7和N-T7兩片段) 並作為訊號放大器,提高檢測銅離子的表現。在以上兩個系統,皆已成功建構出對銅離子專一的菌株,在兩系統中: sfCherry3C (2.5-250 μM) 、T7 RNAP (0.1-5 μM) 都有良好的線性,以及低偵測極限,但目前對於背景值以及檢測倍率的方面還需做進一步的優化。結論來說,我成功了開發了一個對銅離子專一的全細胞生物感測器,雖然目前的檢測表現還有進步空間,但可以利用此兩系統作為基礎,優化並發展出更完善的檢測器。

    Whole-cell biosensors (WBCs) utilize bacteria as hosts for detection. In order to detect environmental pollutants such as metal ions, I utilized genetic engineering techniques to introduce genes into bacteria to achieve our goal. WBCs are known for their low cost, simplicity, and environmentally friendly, which contribute to their rapid development. In my research, I employed C. metallidurans as the host organism and integrated the concept of an AND gate into plasmid design. I chose two promoters, PCopA (Cu2+, Zn2+, Cd2+) and PCopZ (Cu2+, Au3+, Ag+), to enhance the specificity of Cu2+ detection. Additionally, I introduced the recombinant tag Spy Tag/Catcher to improve the efficiency of complementation sfCherry3C(1-10), sfCherry3C(11), and fusion T7 RNA polymerase (C-T7/N-T7), serving as a signal amplifier to enhance Cu2+ detection performance. I successfully constructed Cu2+-specific strains in both of systems. The sfCherry3C system and T7 RNAP system exhibited good linear ranges of 2.5-250 μM and 0.1-5 μM, respectively. Despite their low limit of detection. Unfortunately, both of systems need to be further modified because of high background and low induction fold. In conclusion, I have successfully constructed Cu2+-specific WBCs utilizing the concept of an AND gate. Although optimization is necessary to enhance the detection performance of these two systems, they serve as a foundation for the future development of a more comprehensive detector.

    誌謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 viii 表目錄 x Chapter 1 Introduction 1 1-1基因工程 (Genetic engineering) 1 1-2全細胞生物感測器 (Whole-Cell Biosensor) 3 1-3 宿主細菌 (Host Cell) 4 1-3-1 大腸桿菌 (Escherichia coli, DH5α) 4 1-3-2 大腸桿菌 (Escherichia coli S17) 5 1-3-3 耐金屬貪銅菌 (Cupriavidus metallidurans CH34) 5 1-4 調控系統 6 1-4-1 MerR家族金屬調控系統 6 1-4-2 CueR 調控蛋白 (CueR regulatory system) 7 1-4-3 CopS/R二元調控系統 (CopS/R two-component system) 8 1-5邏輯閘 (Logic gate) 9 1-5-1 檢測目標 (銅二價離子) 10 1-5-2 Spy Tag/Spy Catcher 11 1-5-3 T7 RNA Polymerase (RNAP) 12 1-6 文獻回顧 13 1-6-1 銅離子感測器文獻 13 1-6-2 紅螢光蛋白sfCherry3C與Spy Tag/Spy Catcher相對位置的結合能力 15 Chapter 2 Experimental Materials and Equipment 17 2-1 實驗藥品 17 2-2 實驗儀器 19 Chapter 3 Experimental Methods 21 3-1 基因克隆 (Genetic cloning) 21 3-2 畫盤 (Plate streaking) 21 3-3 菌液培養 (Pre-culture) 22 3-4 質體萃取 (Plasmid extraction) 22 3-5 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 23 3-6 引子黏合 (Oligo) 24 3-7 限制酶剪切 (Restriction enzyme digestion) 25 3-8 膠體電泳 (Agarose gel electrophoresis) 26 3-9 連接作用 (Ligation) 26 3-10 建構方法 (Construction methods) 27 3-10-1 Golden gate assembly 27 3-10-2 Gibson assembly 28 3-10-3 KLD (Kinase/Ligase/DpnI) 29 3-11 轉形作用 (Transformation) 29 3-12 勝任細胞 (Competent cell) 30 3-13 定序 (Sequencing) 31 3-14 存菌 (Storage of the bacteria) 31 3-15 接合作用 (Conjugation) 32 Chapter 4 Experimental Design 32 4-1 質體建構 32 4-1-1 銅離子感測器設計概念 33 4-2 實驗步驟 34 4-2-1 培養過程 34 4-2-2 數據處理 35 Chapter 5 Results and Discussions 36 5-1 銅離子感測器 36 5-1-1 Spy Tag/Catcher系統 36 5-1-1-1 啟動子PCopA和PCopZ金屬誘導性測驗 36 5-1-1-2 單一分裂紅螢光蛋白螢光測試 37 5-1-1-3 Spy Tag/Catcher系統的銅離子初步檢測 38 5-1-1-4 利用抗生素驗證啟動子洩漏表達的問題 40 5-1-1-5 Spy Tag/Catcher系統檢測銅離子以及金離子的檢量線 42 5-1-1-6 YCY_1482真實樣品檢測 44 5-1-1-7 YCY_1482金屬干擾性實驗 45 5-1-1-8 YCY_1482紅螢光顯微鏡圖 46 5-1-2 C-T7/N-T7系統 48 5-1-2-1 C-T7/N-T7基因位置的篩選 48 5-1-2-1-1 C-T7和Spy Tag基因順序優化 48 5-1-2-1-2 對調啟動子(PCopA/PCopZ) 50 5-1-2-1-3 C-T7/N-T7與黏合標籤 (Spy Tag/Catcher) 的交換 52 5-1-2-1-4 Spy Tag-C-T7與Spy Catcher-N-T7在不同啟動子後的比較 54 5-1-2-2 衍生菌株銅、金離子的金屬干擾性實驗 56 5-1-2-3 最佳菌株YCY_1577金屬干擾性實驗 59 5-1-2-4最佳菌株YCY_1577檢量線 60 5-1-2-5 最佳菌株YCY_1577真實樣品檢測 61 5-1-2-6 最佳菌株YCY_1577紅螢光顯微鏡圖 62 5-1-2-7 最佳菌株YCY_1577將PT7-RBS-RFP-T換至PCopA後面的數據表現 63 Chapter 6 Conclusion 64 附錄 66 本篇建構的質體圖 89 Reference 112

    1. Cohen, S. N.; Chang, A. C., Recircularization and autonomous replication of a sheared R-factor DNA segment in Escherichia coli transformants. Proc Natl Acad Sci U S A 1973, 70 (5), 1293-7.
    2. Schuster, L. A.; Reisch, C. R., A plasmid toolbox for controlled gene expression across the Proteobacteria. Nucleic Acids Res 2021, 49 (12), 7189-7202.
    3. Goeddel, D. V.; Kleid, D. G.; Bolivar, F.; Heyneker, H. L.; Yansura, D. G.; Crea, R.; Hirose, T.; Kraszewski, A.; Itakura, K.; Riggs, A. D., Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A 1979, 76 (1), 106-10.
    4. Carpenter, J. E.; Gianessi, L. P., Herbicide tolerant soybeans: why growers are adopting Roundup Ready varieties. 1999.
    https://mospace.umsystem.edu/xmlui/handle/10355/1202
    5. Paoletti, M. G.; Pimentel, D., Genetic engineering in agriculture and the environment. Biosci Biotechnol Biochem 1996, 46 (9), 665-673.
    6. Ahmed, A.; Rushworth, J. V.; Hirst, N. A.; Millner, P. A., Biosensors for whole-cell bacterial detection. Clin Microbiol Rev 2014, 27 (3), 631-46.
    7. Leca‐Bouvier, B.; Blum, L. J., Biosensors for protein detection: a review. Anal Lett 2005, 38 (10), 1491-1517.
    8. Wang, J.; Chicharro, M.; Rivas, G.; Cai, X.; Dontha, N.; Farias, P. A.; Shiraishi, H., DNA biosensor for the detection of hydrazines. Anal Chem 1996, 68 (13), 2251-4.
    9. Rawson, D. M.; Willmer, A. J.; Turner, A. P., Whole-cell biosensors for environmental monitoring. Biosensors 1989, 4 (5), 299-311.
    10. Simpson, M. L.; Sayler, G. S.; Fleming, J. T.; Applegate, B., Whole-cell biocomputing. Trends in biotechnology 2001, 19 (8), 317-323.
    11. Palchetti, I.; Mascini, M., Biosensor technology: a brief history. In Sensors and Microsystems: AISEM 2009 Proceedings, Springer: 2009; pp 15-23.
    12. Helmann, J. D.; Ballard, B. T.; Walsh, C. T., The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 1990, 247 (4945), 946-948.
    13. Hu, C. D.; Kerppola, T. K., Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 2003, 21 (5), 539-45.
    14. Feng, S.; Sekine, S.; Pessino, V.; Li, H.; Leonetti, M. D.; Huang, B., Improved split fluorescent proteins for endogenous protein labeling. Nat Commun 2017, 8 (1), 370.
    15. Cabantous, S.; Terwilliger, T. C.; Waldo, G. S., Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 2005, 23 (1), 102-7.
    16. Ghosh, I.; Hamilton, A. D.; Regan, L., Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 2000, 122 (23), 5658-5659.
    17. Horstman, A.; Tonaco, I. A.; Boutilier, K.; Immink, R. G., A cautionary note on the use of split-YFP/BiFC in plant protein-protein interaction studies. Int J Mol Sci 2014, 15 (6), 9628-43.
    18. Barger, N.; Oren, I.; Li, X.; Habib, M.; Daniel, R., A Whole-Cell Bacterial Biosensor for Blood Markers Detection in Urine. ACS Synth Biol 2021, 10 (5), 1132-1142.
    19. Danilov, V.; Zavilgelsky, G.; Zarubina, A.; Mazhul, M., The role of luxCDE genes in bioluminescence of bacteria. Moscow Univ Biol Sci Bull 2008, 63, 57-61.
    20. Jones, J. A.; Vernacchio, V. R.; Lachance, D. M.; Lebovich, M.; Fu, L.; Shirke, A. N.; Schultz, V. L.; Cress, B.; Linhardt, R. J.; Koffas, M. A., ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways. Sci Rep 2015, 5 (1), 11301.
    21. Wu, Y.; Wang, C. W.; Wang, D.; Wei, N., A Whole-Cell Biosensor for Point-of-Care Detection of Waterborne Bacterial Pathogens. ACS Synth. Biol 2021, 10 (2), 333-344.
    22. Hui, C. Y.; Guo, Y.; Li, L. M.; Liu, L.; Chen, Y. T.; Yi, J.; Zhang, N. X., Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor. Appl Microbiol Biotechnol 2021, 105 (14-15), 6087-6102.
    23. He, M. Y.; Lin, Y. J.; Kao, Y. L.; Kuo, P.; Grauffel, C.; Lim, C.; Cheng, Y. S.; Chou, H. D., Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories. ACS Sens 2021, 6 (3), 995-1002.
    24. Guo, Y.; Hui, C. Y.; Zhang, N. X.; Liu, L.; Li, H.; Zheng, H. J., Development of Cadmium Multiple-Signal Biosensing and Bioadsorption Systems Based on Artificial Cad Operons. Front Bioeng Biotechnol 2021, 9, 585617.
    25. Dhyani, R.; Shankar, K.; Bhatt, A.; Jain, S.; Hussain, A.; Navani, N. K., Homogentisic Acid-Based Whole-Cell Biosensor for Detection of Alkaptonuria Disease. Anal Chem 2021, 93 (10), 4521-4527.
    26. Bryant, F. R., Construction of a recombinase-deficient mutant recA protein that retains single-stranded DNA-dependent ATPase activity. J. Biol. Chem. 1988, 263 (18), 8716-8723.
    27. Phornphisutthimas, S.; Thamchaipenet, A.; Panijpan, B., Conjugation in Escherichia coli: A laboratory exercise. Rep. Biochem. Mol. Biol. 2007, 35 (6), 440-445.
    28. Deng, Y.; Zhang, X.; Zhang, X., Recent advances in genetic modification systems for Actinobacteria. Appl Microbiol Biotechnol 2017, 101 (6), 2217-2226.
    29. Monchy, S.; Benotmane, M. A.; Janssen, P.; Vallaeys, T.; Taghavi, S.; van der Lelie, D.; Mergeay, M., Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 2007, 189 (20), 7417-25.
    30. Julian, D. J.; Kershaw, C. J.; Brown, N. L.; Hobman, J. L., Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34. Antonie Van Leeuwenhoek 2009, 96, 149-159.
    31. Shamim, S.; Rehman, A.; Qazi, M. H., Cadmium-resistance mechanism in the bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2. Arch Environ Contam Toxicol 2014, 67, 149-157.
    32. Wiesemann, N.; Mohr, J.; Grosse, C.; Herzberg, M.; Hause, G.; Reith, F.; Nies, D. H., Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34. J. Bacteriol. 2013, 195 (10), 2298-2308.
    33. Hobman, J. L.; Julian, D. J.; Brown, N. L., Cysteine coordination of Pb (II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34. BMC Microbiol 2012, 12 (1), 1-12.
    34. Hirth, N.; Gerlach, M.-S.; Wiesemann, N.; Herzberg, M.; Große, C.; Nies, D. H., Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl. Environ. Microbiol. 2023, e00567-23.
    35. Guo, M.; Du, R.; Xie, Z.; He, X.; Huang, K.; Luo, Y.; Xu, W., Using the promoters of MerR family proteins as “rheostats” to engineer whole-cell heavy metal biosensors with adjustable sensitivity. J. Med. Biol. Eng. 2019, 13 (1), 1-9.
    36. Brown, N. L.; Stoyanov, J. V.; Kidd, S. P.; Hobman, J. L., The MerR family of transcriptional regulators. FEMS Microbiol Rev 2003, 27 (2-3), 145-63.
    37. Changela, A.; Chen, K.; Xue, Y.; Holschen, J.; Outten, C. E.; O'Halloran, T. V.; Mondragon, A., Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 2003, 301 (5638), 1383-7.
    38. Chang, C. C.; Lin, L. Y.; Zou, X. W.; Huang, C. C.; Chan, N. L., Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res 2015, 43 (15), 7612-23.
    39. Outten, F. W.; Outten, C. E.; Hale, J.; O'Halloran, T. V., Transcriptional Activation of an Escherichia coliCopper Efflux Regulon by the Chromosomal MerR Homologue, CueR. J. Biol. Chem. 2000, 275 (40), 31024-31029.
    40. Brocklehurst, K. R.; Hobman, J. L.; Lawley, B.; Blank, L.; Marshall, S. J.; Brown, N. L.; Morby, A. P., ZntR is a Zn (II)‐responsive MerR‐like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 1999, 31 (3), 893-902.
    41. Hui, C. Y.; Guo, Y.; Yang, X. Q.; Zhang, W.; Huang, X. Q., Surface display of metal binding domain derived from PbrR on Escherichia coli specifically increases lead(II) adsorption. Biotechnol Lett 2018, 40 (5), 837-845.
    42. Ibáñez, M. M.; Checa, S. K.; Soncini, F. C., A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. J Bacteriol 2015, 197 (9), 1606-1613.
    43. Ghataora, J. S.; Gebhard, S.; Reeksting, B. J., Chimeric MerR-Family Regulators and Logic Elements for the Design of Metal Sensitive Genetic Circuits in Bacillus subtilis. ACS Synth Biol 2023, 12 (3), 735-749.
    44. Checa, S. K.; Soncini, F. C., Bacterial gold sensing and resistance. Biometals 2011, 24, 419-427.
    45. Balogh, R. K.; Németh, E.; Jones, N. C.; Hoffmann, S. V.; Jancsó, A.; Gyurcsik, B., A study on the secondary structure of the metalloregulatory protein CueR: effect of pH, metal ions and DNA. Eur Biophys 2021, 50 (3-4), 491-500.
    46. Novoa-Aponte, L.; Xu, C.; Soncini, F. C.; Arguello, J. M., The Two-Component System CopRS Maintains Subfemtomolar Levels of Free Copper in the Periplasm of Pseudomonas aeruginosa Using a Phosphatase-Based Mechanism. mSphere 2020, 5 (6), e01193-20.
    47. Monchy, S.; Benotmane, M. A.; Wattiez, R.; van Aelst, S.; Auquier, V.; Borremans, B.; Mergeay, M.; Taghavi, S.; van der Lelie, D.; Vallaeys, T., Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology (Reading, Engl.) 2006, 152 (Pt 6), 1765-1776.
    48. Grout, I., Introduction to digital logic design. Digital Systems Design with FPGAs
    CPLDs, Elsevier 2008, 217-331.
    49. Naskar, B.; Modak, R.; Sikdar, Y.; Maiti, D. K.; Banik, A.; Dangar, T. K.; Mukhopadhyay, S.; Mandal, D.; Goswami, S., A simple Schiff base molecular logic gate for detection of Zn2+ in water and its bio-imaging application in plant system. J. Photochem. Photobiol. A 2016, 321, 99-109.
    50. Guo, T.; Wu, C.; Offenhäusser, A.; Mayer, D., A novel ratiometric electrochemical biosensor based on a split aptamer for the detection of dopamine with logic gate operations. Phys. Status Solidi 2020, 217 (13), 1900924.
    51. Katz, E.; Poghossian, A.; Schöning, M., Enzyme-based logic gates and circuits—Analytical applications and interfacing with electronics. Anal. Bioanal. Chem. 2017, 409, 81-94.
    52. Fan, D.; Wang, J.; Wang, E.; Dong, S., Propelling DNA Computing with Materials’ Power: Recent Advancements in Innovative DNA Logic Computing Systems and Smart Bio‐Applications. Adv Sci 2020, 7 (24), 2001766.
    53. Gerdan, Z.; Saylan, Y.; Denizli, A., Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines 2022, 13 (8), 1298.
    54. Dupont, C. L.; Grass, G.; Rensing, C., Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics 2011, 3 (11), 1109-1118.
    55. Flemming, C.; Trevors, J. J. W., air,, Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut. 1989, 44, 143-158.
    56. Munson, G. P.; Lam, D. L.; Outten, F. W.; O'Halloran, T. V., Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 2000, 182 (20), 5864-71.
    57. Huffman, D. L.; Huyett, J.; Outten, F. W.; Doan, P. E.; Finney, L. A.; Hoffman, B. M.; O'Halloran, T. V., Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry 2002, 41 (31), 10046-55.
    58. Vergnes, A.; Henry, C.; Grassini, G.; Loiseau, L.; El Hajj, S.; Denis, Y.; Galinier, A.; Vertommen, D.; Aussel, L.; Ezraty, B., Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF. PLoS Genet 2022, 18 (7), e1010180.
    59. Tan, L. L.; Hoon, S. S.; Wong, F. T., Kinetic Controlled Tag-Catcher Interactions for Directed Covalent Protein Assembly. PLoS One 2016, 11 (10), e0165074.
    60. Fan, R.; Hakanpää, J.; Elfving, K.; Taberman, H.; Linder, M. B.; Aranko, A. S., Biomolecular Click Reactions Using a Minimal pH‐Activated Catcher/Tag Pair for Producing Native‐Sized Spider‐Silk Proteins. Angew. Chem. Int. Ed. Engl. 2023, 62 (11), e202216371.
    61. Zakeri, B.; Fierer, J. O.; Celik, E.; Chittock, E. C.; Schwarz-Linek, U.; Moy, V. T.; Howarth, M., Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Chem Sci 2012, 109 (12), E690-E697.
    62. Jiang, L.; Driedonks, T. A.; Jong, W. S.; Dhakal, S.; Bart van den Berg van Saparoea, H.; Sitaras, I.; Zhou, R.; Caputo, C.; Littlefield, K.; Lowman, M., A bacterial extracellular vesicle‐based intranasal vaccine against SARS‐CoV‐2 protects against disease and elicits neutralizing antibodies to wild‐type and Delta variants. Journal of extracellular vesicles 2022, 11 (3), e12192.
    63. Matilla-Cuenca, L.; Taglialegna, A.; Gil, C.; Toledo-Arana, A.; Lasa, I.; Valle, J., Bacterial biofilm functionalization through Bap amyloid engineering. NPJ Biofilms Microbiomes 2022, 8 (1), 62.
    64. Tabor, S.; Richardson, C. C., A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 1985, 82 (4), 1074-8.
    65. Rong, M.; He, B.; McAllister, W. T.; Durbin, R. K., Promoter specificity determinants of T7 RNA polymerase. Proc Natl Acad Sci U.S.A. 1998, 95 (2), 515-519.
    66. Kochetkov, S.; Rusakova, E.; Tunitskaya, V., Recent studies of T7 RNA polymerase mechanism. FEBS letters 1998, 440 (3), 264-267.
    67. Tan, S.-I.; Ng, I.-S., New insight into plasmid-driven T7 RNA polymerase in Escherichia coli and use as a genetic amplifier for a biosensor. ACS Synth Biol 2020, 9 (3), 613-622.
    68. Ikeda, R.; Richardson, C. C., Interactions of a proteolytically nicked RNA polymerase of bacteriophage T7 with its promoter. J. Biol. Chem. 1987, 262 (8), 3800-3808.
    69. Shis, D. L.; Bennett, M. R., Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proc Natl Acad Sci U S A 2013, 110 (13), 5028-33.
    70. Tan, S. I.; Hsiang, C. C.; Ng, I. S., Tailoring Genetic Elements of the Plasmid-Driven T7 System for Stable and Robust One-Step Cloning and Protein Expression in Broad Escherichia coli. ACS Synth Biol 2021, 10 (10), 2753-2762.
    71. Wang, W.; Li, Y.; Wang, Y.; Shi, C.; Li, C.; Li, Q.; Linhardt, R. J., Bacteriophage T7 transcription system: an enabling tool in synthetic biology. Biotechnol. Adv. 2018, 36 (8), 2129-2137.
    72. Castillo-Hair, S. M.; Fujita, M.; Igoshin, O. A.; Tabor, J. J., An Engineered B. subtilis Inducible Promoter System with over 10 000-Fold Dynamic Range. ACS Synth Biol 2019, 8 (7), 1673-1678.
    73. Jin, H.; Lindblad, P.; Bhaya, D., Building an Inducible T7 RNA Polymerase/T7 Promoter Circuit in Synechocystis sp. PCC6803. ACS Synth Biol 2019, 8 (4), 655-660.
    74. Vaneev, A. N.; Timoshenko, R. V.; Gorelkin, P. V.; Klyachko, N. L.; Erofeev, A. S., Recent Advances in Nanopore Technology for Copper Detection and Their Potential Applications. Nanomaterials 2023, 13 (9), 1573.
    75. Yang, L.; McRae, R.; Henary, M. M.; Patel, R.; Lai, B.; Vogt, S.; Fahrni, C. J., Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy. Proc Natl Acad Sci U.S.A. 2005, 102 (32), 11179-11184.
    76. Siriwardhane, T.; Sulkanen, A.; Pathirathna, P.; Tremonti, A.; McElmurry, S. P.; Hashemi, P., Voltammetric characterization of Cu (II) complexation in real-time. Anal. Chem. 2016, 88 (15), 7603-7608.
    77. Guo, Y.; Jian, F.; Kang, X., Nanopore sensor for copper ion detection using a polyamine decorated β-cyclodextrin as the recognition element. RSC advances 2017, 7 (25), 15315-15320.
    78. Kang, Y.; Lee, W.; Kim, S.; Jang, G.; Kim, B.-G.; Yoon, Y., Enhancing the copper-sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering. Appl Microbiol Biotechnol 2018, 102, 1513-1521.
    79. Feng, S.; Varshney, A.; Coto Villa, D.; Modavi, C.; Kohler, J.; Farah, F.; Zhou, S.; Ali, N.; Müller, J. D.; Van Hoven, M. K., Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses. Commun. Biol. 2019, 2 (1), 344.
    80. Erlich, H. A., PCR technology. Springer: 1989; Vol. 246.
    https://link.springer.com/book/10.1007/978-1-349-20235-5
    81. Inoue, H.; Nojima, H.; Okayama, H., High efficiency transformation of Escherichia coli with plasmids. Gene 1990, 96 (1), 23-28.
    82. Simon, R.; Priefer, U.; Pühler, A., A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/technology 1983, 1 (9), 784-791.

    下載圖示
    QR CODE