研究生: |
李秉書 Lee, Pin-Shu |
---|---|
論文名稱: |
古典力學中主要基本原理形成過程的探討-從克卜勒行星運動定律到能量守恆定律 The Investigations on the Formation of Fundamental Principles in Classical Mechanics-from Kepler’s Laws of Planetary Motion to the Law of Conservation of Energy |
指導教授: |
姚珩
Yao, Herng |
學位類別: |
博士 Doctor |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 功 、動能 、力學能 、內能 、能量守恆 |
英文關鍵詞: | Work, Kinetic Energy, Mechanical Energy, Internal Energy, Conservation of Energy |
DOI URL: | https://doi.org/10.6345/NTNU202204322 |
論文種類: | 學術論文 |
相關次數: | 點閱:155 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究所要探討的是在古典力學中,功、動能、位能、力學能守恆以及能量守恆理論的發展歷程。為了完整描述整個脈絡發展,我們首先由克卜勒面積律與橢圓律的重建出發,接著再以牛頓的運動定律及萬有引力定律的提出作為揭開古典力學發展的序幕。
研究結果發現,功與動能的數學雛型最早是出現在牛頓的《原理》一書中,他是為了想知道行星或自由落體在受向心力作用,而非人為或機械的推或拉時,物體於任意位置的速率而引入,與工程上的需要無關。牛頓的想法隨後由白努利加以擴充,他除了將力與位移的關係重新以內積的方式表示外,他還將這種具有正、負值的物理量命名為「能」(即現在的「功」),而成為史上第一個提出完整功概念的物理學家。此外,我們也發現在歷史上首次將牛頓第二定律改寫成f=ma的物理學家也是白努利,而非原先科學史家M. Jammer所認為是由歐拉最早寫下簡潔的f=ma表示式。
此外,我們也發現重力作功與路徑無關的正合微分條件,是克來若於1743年以偏微分方程式首次明確提出。之後,拉格朗日不僅於1773年寫下了歷史上第一個位能函數,而且力學能守恆律也是他在1780年首次以分析力學推導而成。然而,能量的形式到最後並不是僅有動能和位能而已,因為從十九世紀開始,便已經有多位科學家注意到光、熱、電、磁與化學親和力似乎彼此間有互相轉換的現象,從而開始逐漸建立其自然力量普遍具有轉換性的自然哲學觀。後來,德國物理學家梅爾於1842年以因果等價原理的關係來說明能量的不可毀滅性,並寫下史上第一個由功轉換成熱的熱功當量關係(1 cal等於3.58 J)。英國物理學家焦耳則是於1843年始得知1 cal為4.82 J,之後再經過實驗改良,最後他才於1849年得到1 cal為4.15 J的更精確結果。
雖然上述由作功轉成熱的熱功當量已經由實驗得知,不過當時卻還沒有可靠的實驗證據支持熱可轉換成作功。因此除了亥姆霍玆於信念上支持外,當時科學家們普遍因為支持熱質說,其實並不承認熱與功可互相轉換的熱功當量關係。後來於1850年,熱機運作的正確解釋由克勞修斯率先提出。他認為當熱機作功時,除了部份的熱會由高溫往低溫物體傳播之外,也會有部份的熱會轉化為功。他由上述想法提出具有內能概念的熱力學第一定律後,才讓克耳文及大部份的物理學家放棄熱質說,而接受熱與功可互相轉換的概念。從此之後,包含“能量具有不同形態”、“能量不可被創造與毀滅”及“熱與功彼此可互相轉換”三大特性的能量守恆定律,就成為古典力學的重要定律。
The purpose of this study is to investigate the theoretical developments of work, kinetic energy, potential energy, the conservation of mechanical energy and the conservation of energy in classical mechanics. In order to clarify the whole process of development, the reconstructions of Kepler’s first two laws for planets are introduced as the first reference in this study. Subsequently, Newton's law of motion and his law of universal gravitation will be utilized as a prelude to the development of classical mechanics.
The results showed that the mathematical prototypes of work and kinetic energy are initially published in Newton’s "Principia". These concepts were proposed due to the fact that Newton wanted to find the speed of a planet or freefall at any position under the action of centripetal force, rather than the external force exerted by the machine. Newton’s hypothesis is eventually expanded by Johann Bernoulli, who was considered to reconstruct force and displacement relationship based on the representation of the dot product and in either a positive or negative physical quantity named "energy" (now is called the "work"), therefore became the first proposed the complete concept of work by physicists. In addition, the results also indicated that it is the physicist, Johann Bernoulli, for the first time in history rewrote Newton's second law as "f = ma" rather than Euler, the one whom the scientific historian M. Jammer perceived the first to write the concise expression "f = ma".
We also found that the condition, which is fulfilled by the exact differential about the work of the gravitational force and does not depend on the trajectory of the body, is first explicitly determined in partial differential equation by Clairaut in 1743. Lagrange first proposed the model of potential energy function in history in 1773, and then he successfully established the law of conservation of mechanical energy by using the Analytical Mechanics in 1780. Besides, the energy end up possessing not only two forms of energy such as the kinetic and potential energy. Since the beginning of the nineteenth century, a number of scientists have noted the phenomenon seems to have mutual conversion among light, heat, electricity, magnetism and chemical affinity. Consequently, they began to establish their universal convertibility of natural powers in natural philosophy. After that, German physicist Mayer has illustrated that the principle of “causa aequat effectum” can be used to explain why the energy can’t be destroyed. Furthermore, he has proposed the first mechanical equivalent of heat in the history in 1842, which is related to SI units as shown below: 1 calorie is equal to 3.58 J. However, 1 calorie is equal to 4.82 J in SI units by the British physicist Joule in 1843. Eventually, in 1849, the further results from physicist Joule provide the more accurate values by using improved experiments; the final results showed that the 1 calorie is equal to 4.15 J.
Even though the relationship of the convertibility of work into heat has been demonstrated as described above, there was no experimental evidence to support heat can be converted into work. At that time, most of scientists actually support the caloric theory rather than mutual convertibility of heat and work aside from support from Helmholtz’s faith in the convertibility of energy. The correct interpretation of the heat engine operating by Clausius first proposed in 1850. He mentioned that during the process of heat engine starting to work, some portion of heat is not only normally transferred from a high temperature object to a low temperature object, but also converted to work. Consequently, he proposed the first law of thermodynamics incorporating the concept of internal energy and persuaded the opponents including Lord Kelvin and physicists who support the caloric theory to accept the concept regarding mutual convertibility of heat and work. Since that, three characteristics about conservation of energy have become an important law in classical mechanics, including energy that can be changed to many different forms, and that can neither be created nor destroyed as well as the heat and work that are interchangeable.
壹、中文部份
1. 田芷綾、姚 珩(2010)。引力理論建立的關鍵—向心力概念的形成。科學教育月刊,330,22-33。
2. 姚 珩(2011)。古典力學的奠定-數學觀與機械論的統合。科學教育月刊,340,11-21。
3. 姚 珩、田芷綾(2010)。萬有引力平方反比律來自於橢圓律還是週期律。科學教育月刊,332,2-16。
4. 姚 珩、李秉書(2015)。牛頓運動定律F=ma何時正式出現。科學教育月刊。378,22-26。
5. 姚 珩、李秉書(2016a)。牛頓最先所提出功與動能概念的意涵。科學教育月刊。387,25-32。
6. 姚 珩、李秉書(2016b)。位能發生的觀念與意義。科學教育月刊,已接受。
7. 姚 珩、孫治平、李秉書(2016)。力學能守恆理論形成的探究及其在融入教材與強化科學方法本質上的意義。審查中。
8. 高涌泉(2011)。高級中學基礎物理二B下冊。新北市:龍騰文化。
9. 國立台灣師範大學科學教育中心(1995)。高級中學物理第二冊(吳大猷主編)。台北市:國立編譯館。
10. 傅昭銘、陳義裕(2011)。高級中學基礎物理二B下冊。台南市:南一書局。
11. 項武義、張海潮(2008)。從刻卜勒到牛頓-千古迷題破解日萬有引力發現時。數學傳播,32(2),3-12。
12. 項武義、張海潮、姚 珩(2010)。千古之謎:幾何、天文與物理兩千年。臺北:臺灣商務。
13. 項武義、張海潮、陳鵬仁、姚 珩(2010)。重訪克卜勒-地球的面積律與橢圓律。數學傳播,34(2),44-51。
貳、西文部份
1. Benson, H. (1996). University Physics. New York: John Wiley & Sons, Inc.
2. Bernoulli, J. (1724). Discours sur les Lois de la Communication du Mouvement. Paris: Chez Claude Jombert.
3. Bernoulli, J. (1736). Recherches physiques et géométriques sur la question: Comment se fait la propagation de la lumière. Paris: Imprimerie Royale.
4. Bernoulli, J. (1742). Hydraulica. Johannis Bernoulli, Opera Omnia (Vol. 4, pp. 387-488). Lausanne & Geneva: Sumptibus Marci-Michaelis Bousquet & Sociorum.
5. Capecchi, D. (2012). History of Virtual Work Laws: A History of Mechanics Prospective. Milan: Birkhäuser.
6. Carnot, S. (1824). Reflections on the Motive Power of Heat, and on Machines Fitted to Develop that Power. In R. H. Thurston (Ed.), Reflections on the Motive Power of Heat (pp. 37-126). New York: John Wiley.
7. Clairaut, A. C. (1739). Recherches générales sur le calcul intégral. Histoire de l'Académie royale des sciences, Année 1739, 425-436.
8. Clairaut, A. C. (1743). Theorie de la figure de la terre: tirée des principes de l’hydrostratique. Paris: Durand.
9. Clausius, R. (1867). The Mechanical Theory of Heat. (T. A. Hirst, Ed.). London: John Van Voorst.
10. Coelho, R. L. (2009). On the Concept of Energy: How Understanding Its History Can Improve Physics Teaching. Science and Education 18(8), 961–983.
11. Colding, L. A. (1864). On the History of the Principle of the Conservation of Energy. The London and Edinburgh Philosophical Magazine and Journal of Science, 27(4), 56-64.
12. Coriolis, G. (1829). Du calcul de l'effet des machines. Paris: Carilian-Gœury.
13. Cotignola, M. I., Bordogna, C., Punte, G., & Cappannini, O. M. (2002). Difficulties in Learning Thermodynamic Concepts: Are They Linked to the Historical Development of This Field? Science and Education 11(3), 279–291.
14. Davy, H. (1839). An Essay on Heat, Light, and the Combinations of Light. In J. Davy (Ed.), The Collected Works of Sir Humphry Davy (Vol. 2). London: Smith, Elder and Co. Cornhill.
15. Davy, H. (1840). On Some Chemical Agencies of Electricity. In J. Davy (Ed.), The Collected Works of Sir Humphry Davy (Vol. 5). London: Smith, Elder and Co. Cornhill.
16. Descartes, R. (1991). Principles of Philosophy. Netherlands: Kluwer Academic Publishers. (Original work published 1644).
17. Euler, L. (1736). Mechanica (Vol. 1). Petropoli: Aoademiae Scientiarum.
18. Euler, L. (1752). Decouverte d'un nouveau principe de Mecanique. Berlin: Mémoires de l'académie des sciences. pp. 185-217
19. Faraday, M. (1844). Experimental Researches in Electricity (Vol. 2). London: Richard and John Edward Taylor.
20. Galilei, G. (1967). Dialogue concerning the two chief world systems, Ptolemaic & Copernican(S. Drake, Trans.). Berkeley: University of California Press. (Original work published 1632).
21. Galileo, G. (1914). Dialogues Concerning Two New Sciences(H. Crew & Alfonso De Salvio, Trans.). New York : The Macmillan Company. (Original work published 1638).
22. Gilbert, W. (1893). On the Loadstone and Magnetic Bodies, and on the Great Magnet the Earth. London: Bernard Quaritch. (Original work published 1600).
23. Goldstein, H., Poole, C., & Safko, J. (2002). Classical Mechanics (3rd ed.). San Francisco: Addison-Wesley.
24. Green, G. (1828). An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. Nottingham: Printed for the author, by T. Wheelhouse.
25. Halliday, D., Resnick, R., & Walker, J. (2011). Fundamentals of Physics (9th ed.). New York: John Wiley & Sons.
26. Harman, P. M. (1982). Energy, Force and Matter: The Conceptual Development of Nineteenth-Century Physics. Cambridge University Press.
27. Harman, P. M. (1993). After Newton: Essays on Natural Philosophy. Hampshire: Variorum.
28. Helmholtz, H. (1889). Über die Erhaltung der Kraft. Ostwald’s Klassiker der exakten Wissenschaften, Nr. 1. Leipzig: Wilhelm Engelmann.
29. Hsiang, W. Y., Chang, H. C., Yao, H., & Lee, P. S. (2015). Re-establishing Kepler's first two laws for planets in a concise way through the non-stationary Earth. European Journal of Physcis, 36(2015)045006(16pp).
30. Hugens, C. (1669). A Summary Account of the Laws of Motion, Communicated by Mr. Christian Hugens in a Letter to the R. Society. In D. Jalobeanu & P. Anstey (Eds.), Vanishing Matter and the Laws of Nature (pp. 154-157). New York: Routledge.
31. Jammer, M. (1997). Concepts of Mass-In classical and modern physics. New York: Dover.
32. Jones, B. (1870). The Life and Letters of Faraday (Vol. 2). London: Longmans, Green and Company.
33. Joule, J. P. (1843). On the calorific effects of magneto-electricity, and on the mechanical value of heat. The London and Edinburgh Philosophical Magazine and Journal of Science, 23(154), 435-443.
34. Joule, J. P. (1845). On the Mechanical Equivalent of Heat. The Scientific Papers of James Prescott Joule (Vol. 1, p. 202). London: Taylor & Francis.
35. Joule, J. P. (1849). On the Mechanical Equivalent of Heat. Philosophical Transactions of the Royal Society of London, 140, 61-82.
36. Kepler, J. (1997). The Harmony of the World(E. J. Aiton, A. M. Duncan ,& J. V. Field, Trans.). Philadelphia: American Philosophical Society. (Original work published 1619).
37. Kipnis, N. (2014). Thermodynamics and Mechanical Equivalent of Heat. Science and Education 23(10), 2007–2044.
38. Kuhn, T. S. (1977). The Essential Tension. Chicago: University of Chicago Press.
39. Lagrange, J. L. (1773). Sur l'équation séculaire de la lune. l’Académie Royale des Sciences (Ed.), Mémoires de mathématique et de physique, Année (pp. 1-61). Paris: de l'imprimerie Royale.
40. Lagrange, J. L. (1788). Méchanique Analytique. Paris: Chez la Veuve Desaint.
41. Lagrange, J. L. (1870). Théorie de la libration de la Lune, Oeuvres de Lagrange (Vol. 5, pp. 5-122). Paris: Gauthier-Villars.
42. Love, R. (1972). Some Sources of Herman Boerhaave's Concept of Fire. Ambix, 19(3), 157-174.
43. Maxwell, J. C. (1878). Matter and Motion. New York: D. Van Nostrand Company.
44. Mayer, J. R. (1845). Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel. Heilbronn: C. Drechsler.
45. Mayer, J. R. (1868). Remarks on the Forces of Inorganic Nature. In E. L. Youmans (Ed.), The Correlation and conservation of forces (pp. 251–258). New York: D. Appleton & Company.
46. Newton, I. (1730). Opticks: or, A treatise of the reflections, refractions, inflections, and colours of light. London: Printed for William Innys. (Original work published 1704).
47. Newton, I. (1846). Newton’s Principia: The Mathematical Principles Of Natural Philosophy(A. Motte, Trans.). New York: Daniel. (Original work published 1687).
48. Rankine, W. (1853). On The General Law of the Transformation of Energy. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 5(30), 106–117.
49. Rankine, W. (1859). On The Conservation of Energy. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 17(114), 250–253.
50. Roche, J. J. (1998). The Mathematics of Measurement: A Critical History. London: Athlone Press.
51. Serway, R. A., & Jewett, J. W. (2010). Physics for Scientists and Engineers with Modern Physics. Belmont: Brooks/Cole.
52. Thompson, B. (1798). An inquiry concerning the source of the heat which is excited by friction. Philosophical Transactions of the Royal Society of London, 88, 80-102.
53. Thomson, W. (1848). On an Absolute Thermometric Scale Founded on Carnot’s Theory of the Motive Power of Heat. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 32(222), 313-317.
54. Thomson, W. (1852a). On a Universal Tendency in Nature to the Dissipation of Mechanical Energy. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 4(25), 304-306.
55. Thomson, W. (1852b). On the Dynamical Theory of Heat. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 4(22), 8-21.
56. Thomson, W. (1901). Nineteenth Century Clouds over the Dynamical Theory of Heat and Light. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 2(6), 1-40.
57. Thomson, W., & Tait, P. G. (1862). Energy. Good Words, 3, 601-607.
58. Varignon, P. (1700). Maniére générale de déterminer les Forces, les Vitesses, les Espaces & les Tems. l’Académie Royale des Sciences (Ed.), Histoire de l'Academie royale des sciences-Avec les memoires de mathematique & de physique, Année 1700 (pp. 22-27). Paris: Jean Boudot.
59. Varignon, P. (1707). Des mouvements variés à volonté, comparés entre eux et avec les uniformes. Histoire de l'Académie royale des sciences, Année 1707, 222-275.
60. Varignon, P. (1725). Corollaire général de la Théorie précédente. l’Académie Royales des Sciences de France (Ed.), Nouvelle mécanique ou statique,vol. 2 (pp. 174-223). Paris: Claude Jombert.
61. Westfall, R. S. (1971). The Construction of Modern Science: Mechanisms and Mechanics. Cambridge University Press.
62. Young, H. D., Freedman, R. A., & Ford, A. L. (2012). Sears and Zemansky’s University Physics. Boston: Addison-Wesley.