研究生: |
秦天 Qin, Tian |
---|---|
論文名稱: |
優化組織圖對誘人細節效應的作用:生成性學習機制的啟示 The Impact of Optimized Graphic Organizers on the Seductive Details Effect: Insight from Generative Learning Mechanisms |
指導教授: |
陳李綢
Chen, Li-Chou 吳昭容 Wu, Chao-Jung |
口試委員: |
陳李綢
Chen, Li-Chou 吳昭容 Wu, Chao-Jung 林珊如 Lin, Sunny S. J. 洪振方 Hung, Jeng-Fung 黃博聖 Huang, Po-Sheng |
口試日期: | 2024/07/29 |
學位類別: |
博士 Doctor |
系所名稱: |
教育心理與輔導學系 Department of Educational Psychology and Counseling |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 組織圖 、誘人細節效應 、多媒體學習 、生成性學習 、高中生 |
英文關鍵詞: | graphic organizers, seductive details effect, multimedia learning,, generative learning, high school students |
研究方法: | 實驗設計法 、 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401771 |
論文種類: | 學術論文 |
相關次數: | 點閱:201 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
誘人細節是指教材中與學習目標無關但有趣的資訊。儘管這類資訊可以提升學習者的興趣,但它們也會引發誘人細節效應。為減輕其負面影響,以往研究嘗試應用了多媒體教學設計原則,但效果不佳。本研究以高中生為研究對象,從生成性學習理論的視角出發,探討生成性學習活動之一的組織圖在生物學科說明文中對誘人細節效應的影響。
組織圖是一種視覺化生成性學習活動,能將文本轉化為空間視覺形式,通過展示概念、術語或觀點之間的關係促進學習。傳統組織圖分為兩類:向學習者呈現完整的組織圖(filled-in graphic organizers, FGO),以及要求學習者根據文本生成組織圖(interactive graphic organizers, IGO)。儘管FGO直觀且便於展示知識重點,但學習者可能僅僅記憶內容而缺乏深層處理;而IGO則能增加學習者的認知投入,但可能因材料複雜或學習者能力不足,生成的組織圖品質較低。因此,本研究有兩個目標:第一,將對傳統組織圖使用方式進行優化設計,考察優化組織圖是否比傳統組織圖效果更好。第二,考察優化組織圖是否能夠降低誘人細節效應,以及在這個過程中學習者的情境興趣水平會有什麼變化。
本研究包含一個前導實驗與兩個正式實驗。前導實驗確定實驗材料的可讀性,篩選難度和區分度適合的前後測題目。實驗一使用信號原則中的多媒體整合信號和分段原則優化傳統形式FGO,幫助學習者更有效的整合組織圖和文本資訊;通過分段提供組織圖框架和關鍵概念,降低傳統IGO生成難度,提升其準確性。211名高中生學習了關於病毒感染人體細胞的說明文,分為四個實驗條件:傳統FGO組、優化FGO組、傳統IGO組和優化IGO組。結果顯示,優化FGO組在保留與遷移測驗上的表現顯著高於傳統FGO組,優化FGO組的學習時間和認知負荷高於傳統FGO組,表明優化FGO促進了更深層次的處理;優化IGO組在保留與遷移測驗上的表現顯著高於傳統IGO組,優化IGO組的學習時間和認知負荷低於傳統IGO組,且組織圖完成的正確率更高,表明優化IGO降低了任務難度,提升了完成品質;優化IGO組在保留和遷移測驗上高於優化FGO,優化IGO組的學習時間和認知負荷高於優化FGO組,證明優化IGO更好地促進了生成性學習過程,提升了學習表現。
實驗二中,210名高中生使用與實驗一相同的學習材料,並添加了與病毒相關的誘人細節,分為四個條件:控制組(無組織圖和誘人細節)、誘人細節組、優化FGO加誘人細節組、優化IGO加誘人細節組。首先,結果再次證實了誘人細節效應,即誘人細節組在保留和遷移測驗上低於控制組,外在認知負荷和情境興趣高於控制組,但學習時間無差異。第二,研究發現優化組織圖能降低誘人細節效應,優化FGO加誘人細節組和優化IGO加誘人細節組在保留和遷移測驗中的表現顯著高於誘人細節組。第三,優化FGO加誘人細節組在保留測驗上的表現高於優化IGO加誘人細節組,兩者在遷移測驗上無差異。第四,實驗二還發現外在認知負荷的中介作用,即優化FGO通過降低外在認知負荷提升學習表現。最後,研究發現在誘人細節情境下使用組織圖,學習者的情境興趣會下降。
兩個實驗結果表明,相較於傳統方法,優化組織圖能更好地促進生成性學習過程,提升學習表現。學習材料的性質會影響優化FGO和IGO的效果,尤其當材料中包含誘人細節時,優化FGO是更好的選擇。本研究的局限在於使用圖形組織者的形式比較單一,未來研究可以嘗試考察其他類型的組織圖對生成性學習有何種影響,或者可以嘗試將優化FGO與優化IGO組合使用更好的發揮優化組織圖對於學習的促進作用。其次,未來研究也可以考慮增加對於認知過程的直接測量,例如眼動技術,進一步解釋優化組織圖是如何降低誘人細節效應的。最後,本研究僅採用了立即測驗,未來研究可以嘗試通過增加延宕測驗來考察誘人細節潛在的情緒動機作用。
Seductive details refer to interesting pieces of information within an expository text that are only tangentially related to the target concept. While such information can improve learners' learning interest, it also raises extraneous cognitive load. When the presence of this information results in reduced comprehension, this is called the seductive details effect. Previous research has attempted to mitigate the negative impact of seductive details by applying multimedia learning principles to reduce the extraneous cognitive load they induce, but with limited success. This study explores the impact of a generative learning activity, specifically graphic organizers, on the seductive details effect from a generative learning perspective.
Graphic organizers are a visual generative learning activity that transform text into spatial-visual formats, promoting learning by showing the relationships between concepts, terms, or ideas. Graphic organizers can be categorized into two types: fully completed graphic organizers (FGO) presented to learners, and interactive graphic organizers (IGO) that require learners to generate them based on the text. Although adding a matrix organizer provides a better opportunity for generative learning, the student may still just try to memorize the material in the matrix, without engaging in deeper processing. IGOs, on the other hand, increase cognitive engagement but might result in low-quality graphic organizers due to material complexity or insufficient learner abilities. Therefore, this study has two objectives: Firstly, to optimize the traditional FGOs and IGOs and examine whether the optimized versions perform better than traditional ones; secondly, to investigate which type of optimized graphic organizer can reduce the seductive details effect and the roles of extraneous cognitive load t in this process.
This study includes a prior study and two main experiments. The prior study aims to determine the practicality of the experimental materials and select pre- and post-test questions with appropriate difficulty and discrimination. Experiment 1 optimizes traditional FGOs using signaling and segmenting principles to help learners integrate graphic organizers and text information, and reduces the difficulty of generating IGOs by segmenting the framework and key concepts. Two hundred high school students studied an expository text about viral infections of human cells, divided into four conditions: Traditional FGO group, optimized FGO group, traditional IGO group, and optimized IGO group. Results showed that optimized graphic organizers performed better on retention and transfer tests; the optimized FGO group had higher learning time and cognitive load than the traditional IGO group, indicating that optimized FGOs promote deeper processing; the optimized IGO group had lower learning time and cognitive load than the traditional IGO group, with higher accuracy in completing graphic organizers, indicating that optimized IGOs reduced task difficulty and improved quality; the optimized IGO group outperformed the optimized FGO group in retention and transfer tests, suggesting that optimized IGOs better facilitate the generative learning process and enhance learning performance.
In Experiment 2, 210 high school students used the same learning materials as in Experiment 1, with seductive details related to viruses added to the seductive details and optimized graphic organizer groups. They were divided into four conditions: Control group (no graphic organizers or seductive details), seductive details group, optimized FGO + seductive details group, and optimized IGO + seductive details group. First, the results confirmed the seductive details effect, with the seductive details group performing worse on retention and transfer tests than the control group, and having higher extraneous cognitive load and situational interest but no difference in learning time. Second, the study found that optimized graphic organizers can reduce the seductive details effect, with both optimized FGO + seductive details and optimized IGO + seductive details groups outperforming the seductive details group in retention and transfer tests. Third, the optimized FGO + seductive details group performed better on retention tests than the optimized IGO + seductive details group, with no difference in transfer tests; the optimized FGO + seductive details group had lower learning time and extraneous cognitive load than the optimized IGO + seductive details group, contrary to Experiment 1. Fourth, experiment 2 also found a mediating effect of extraneous cognitive load, with optimized FGOs enhancing learning performance by reducing extraneous cognitive load. Finally, the study found that using graphic organizers in seductive details contexts leads to a decrease in learners' situational interest.
These results indicate that compared to traditional methods, optimized graphic organizers better facilitate cognitive processes and enhance learning performance. The complexity of learning materials affects the effectiveness of optimized FGOs and IGOs, especially when seductive details are included, making optimized FGOs a better choice.
The limitations of this study lie in the relatively singular form of graphic organizers used. Future research could explore the effects of other types of graphic organizers on generative learning or attempt to combine optimized FGO and optimized IGO to better enhance learning. Additionally, future studies could consider increasing direct measurements of cognitive processes, such as using eye-tracking technology, to further explain how optimized graphic organizers reduce the seductive details effect. Lastly, this study only utilized immediate tests; future research could attempt to assess the potential emotional and motivational effects of seductive details by delayed tests.
Abercrombie, S. (2013). Transfer effects of adding seductive details to case-based instruction. Contemporary Educational Psychology, 38(2), 149–157. https://doi.org/10.1016/j.cedpsych.2013.01.002
Abercrombie, S., Hushman, C. J., & Carbonneau, K. J. (2019). The impact of seductive details and signaling on analogical transfer. Applied Cognitive Psychology, 33(1), 38–47. https://doi.org/10.1002/acp.3475
Almulla, M. A., & Alamri, M. M. (2021). Using conceptual mapping for learning to affect students’ motivation and academic achievement. Sustainability, 13(7), Article 4029. https://doi.org/10.3390/su13074029
Alpizar, D., Adesope, O. O., & Wong, R. M. (2020). A meta-analysis of signaling principle in multimedia learning environments. Educational Technology Research and Development, 68(5), 2095–2119. https://doi.org/10.1007/s11423–020–09748–7
Bender, L., Renkl, A., & Eitel, A. (2021). Seductive details do their damage also in. longer learning sessions – When the details are perceived as relevant. Journal of Computer Assisted Learning, 37(5), 1248–1262. https://doi.org/10.1111/jcal.12560
Bernacki, M. L., & Walkington, C. (2018). The role of situational interest in personalized learning. Journal of Educational Psychology, 110(6), 864–881. https://doi.org/10.1037/edu0000250
Berthold, K., & Renkl, A. (2009). Instructional aids to support conceptual. understanding of multiple representations. Journal of Educational Psychology, 101(1), 70–87. https://doi.org/10.1037/a0013247
Bobek, E., & Tversky, B. (2016). Creating visual explanations improves learning Cognitive Research: Principles and Implications, 1(1), 27. https://doi.org/10.1186/s41235–016–0031–6
Boucheix, J. M., & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20(2), 123–135. https://doi.org/10.1016/j.learninstruc.2009.02.015
Boykin, A., Evmenova, A. S., Regan, K., & Mastropieri, M. (2019). The impact of a computer-based graphic organizer with embedded self-regulated learning strategies on the argumentative writing of students in inclusive cross-curricula settings. Computers & Education, 137, 78–90. https://doi.org/10.1016/j.compedu.2019.03.008
Castro-Alonso, J. C., de Koning, B. B., Fiorella, L., & Paas, F. (2021). Five strategies for optimizing instructional materials: Instructor-and learner-managed cognitive load. Educational Psychology Review, 33(4), 1379–1407.
https://doi.org/10.1007/s10648-021-09606-9
Chang, Y., & Choi, S. (2014). Effects of seductive details evidenced by gaze duration. Neurobiology of Learning and Memory, 109, 131–138. https://doi.org/10.1016/j.nlm.2014.01.005
Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145–182. https://doi.org/10.1207/s15516709cog1302_1
Chi, M. T., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219–243. https://doi.org/10.1080/00461520.2014.965823
Chsu, T., & Jamet, É. (2018). Does self-generating a graphic organizer while reading improve students’ learning? Computers & Education, 126, 13–22. https://doi.org/10.1016/j.compedu.2018.06.028
Colliot, T., & Jamet, É. (2019). Asking students to be active learners: The effects of totally or partially self-generating a graphic organizer on students’ learning performances. Instructional Science, 47(4), 463–480. https://doi.org/10.1007/s11251–019–09488–z
Colliot, T., & Jamet, É. (2020). Effects of self‐generated graphic organizers on learning depend on in‐task guidance. Journal of Computer Assisted Learning, 36(5), 646–655. https://doi.org/10.1111/jcal.12434
Colliot, T., Kiewra, K. A., Luo, L., Flanigan, A. E., Lu, J., Kennedy, C., & Black, S. (2022). The effects of graphic organizer completeness and note–taking medium on computer-based learning. Education and Information Technologies, 27(2), 2435–2456. https://doi.org/10.1007/s10639-021-10693-y
Cook, L. K., & Mayer, R. E. (1988). Teaching readers about the structure of scientific. text. Journal of Educational Psychology, Vol. 80(4), 448–456. https://doi.org/10.1037/0022–0663.80.4.448
Cooper, G., Tindall-Ford, S., Chandler, P., & Sweller, J. (2001). Learning by imagining. Journal of Experimental Psychology: Applied, 7(1), 68–82. https://doi.org/ 10.1017/CBO9781107707085.007
Eitel, A., Bender, L., & Renkl, A. (2019). Are seductive details seductive only when you think they are relevant? An experimental test of the moderating role of perceived relevance. Applied Cognitive Psychology, 33(1), 20–30. https://doi.org/10.1002/acp.3479
Eitel, A., Endres, T., & Renkl, A. (2022). Specific questions during retrieval practice. are better for texts containing seductive details. Applied Cognitive Psychology, 36(5), 996–1008. https://doi.org/10.1002/acp.3984
Eitel, A., & Kühl, T. (2019). Editorial: Harmful or helpful to learning? The impact of. seductive details on learning and instruction. Applied Cognitive Psychology, 33(1), 3–8. https://doi.org/10.1002/acp.3513
Fiorella, L., & Kuhlmann, S. (2020). Creating drawings enhances learning by teaching. Journal of Educational Psychology, 112(4), 811–822. https://doi.org/10.1037/edu0000392
Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. Educational Psychology Review, 8(4), 717–741. https://doi.org/10.1007/s10648–015–9348–9
Fiorella, L., & Mayer, R. E. (2021a). Principles for reducing extraneous processing in. multimedia learning: coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer & L. Fiorella (Eds.), The Cambridge handbook of multimedia learning (pp. 185–198). Cambridge University Press. https://doi.org/10.1017/9781108894333.019
Fiorella, L., & Mayer, R. E. (2021b). The generative activity principle in multimedia learning. The Cambridge handbook of multimedia learning (pp. 339–350). Cambridge University Press. https://doi.org/10.1017/9781108894333.036
Fiorella, L., & Mayer, R. E. (2017). Spontaneous spatial strategy use in learning from scientific text. Contemporary Educational Psychology, 49, 66–79. https://doi.org/10.1016/j.cedpsych.2017.01.002
Fiorella, L. (2023). Making sense of generative learning. Educational Psychology Review, 35(2), Article 50. https://doi.org/ 10.4324/9780203464717_chapter_2
Garner, R., Gillingham, M. G., & White, C. S. (1989). Effects of seductive details on macroprocessing and microprocessing in adults and children. Cognition and Instruction, 6(1), 41–57. https://doi.org/10.1207/s1532690xci0601_2
Garner, R., Alexander, P. A., Gillingham, M. G., Kulikowich, J. M., & Brown, R. (1991). Interest and learning from text. American Educational Research Journal, 28, 643–659. https://doi.org/10.3102/00028312028003643
Garner, R., Gillingham, M. G., & White, C. S. (1989). Effects of 'seductive details' on macroprocessing and microprocessing in adults and children. Cognition and Instruction, 6(1), 41–57. https://doi.org/10.1207/s1532690xci0601_2
Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12, 516–522. https://doi.org/10.1111/1467–9280.00395
Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 516–522. https://doi.org/10.1111/j.1467–9280.2009.02297.x
Golke, S., & Wittwer, J. (2024). Informative narratives increase students’ situational interest in science topics. Learning and Instruction, 93, Article 101973. https://doi.org/10.1002/sce.20425
Gregory, R. (2013). Validity and test construction. Psychological testing, history, principles, and applications (pp. 118-153). Pearson.
Grobe, C. S., & Renkl, A. (2006). Effects of multiple solution methods in mathematics learning. Learning and Instruction, 17, 612–634. https://doi.org/ 10.1016/j.learninstruc.2006.02.001
Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook passages among low- and high-ability children. Contemporary Educational Psychology, 24, 95–123.
http://dx.doi.org/ 10.1006/ceps.1998.0987
Harp, S. F., & Maslich, A. A. (2005). The consequences of including seductive details during lecture. Teaching of Psychology, 32(2), 100–103. https://doi.org/10.1207/s15328023top3202_4
Harp, S. F., & Mayer, R. E. (1997). The role of interest in learning from scientific text and illustrations: On the distinction between emotional interest and cognitive interest. Journal of Educational Psychology, 89(1), 92–102. https://doi.org/10.1037/0022–0663.89.1.92
Harp, S. F., & Mayer, R. E. (1998). How seductive details do their damage: A theory of cognitive interest in science learning. Journal of Educational Psychology, 90(3), 414–434. https://doi.org/10.1037/0022–0663.90.3.414
Harp, S. F., & Maslich, A. A. (2005). The consequences of including seductive details during lecture. Teaching of Psychology, 32(2), 100–103. https://doi.org/10.1207/s15328023top3202_4
Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Journal of Educational Measurement, 51(3), 335–337. https://doi.org/10.1111/jedm.12050
Hayes, D. A., & Reinking, D. (1991). Good and poor readers’ use of graphic aids cued in texts and in adjunct study materials. Contemporary Educational Psychology, 16(4), 391–398. https://doi.org/10.1016/0361–476X(91)90016–E
Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32, 717–742. http://dx.doi.org/10.1006/jmla.1993.1036
Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127. https://doi.org/10.1207/s15326985ep4102_4
Hui, L., de Bruin, A. B. H., Donkers, J., & van Merrienboer, J. J. G. (2022). Why students do (or do not) choose retrieval practice: Their perceptions of mental effort during task performance matter. Applied Cognitive Psychology, 36(2), 433–444. https://doi.org/10.1002/acp.3933
Howard, M. C., & Lee, J. (2020). Pre‐training interventions to counteract seductive details in virtual reality training programs. Human Resource Development Quarterly, 31(1), 13–29. https://doi.org/10.1002/hrdq.21378
Jaeger, A. J., Velazquez, M. N., Dawdanow, A., & Shipley, T. F. (2018). Sketching and summarizing to reduce memory for seductive details in science text. Journal of Educational Psychology, 110(7), 899–916. https://doi.org/10.1037/edu0000254
Jamet, E., Gavota, M., & Quaireau, C. (2008). Attention guiding in multimedia learning. Learning and Instruction, 18(2), 135–145. https://doi.org/10.1016/j.learninstruc.2007.01.011
Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13(4), 351–371. https://doi.org/10.1002/(SICI)1099-0720(199908)13:4<351::AID-ACP589>3.0.CO;2-6
Kienitz, A., Krebs, M.-C., & Eitel, A. (2023). Seductive details hamper learning even when they do not disrupt. Instructional Science, 51(4), 595–616. https://doi.org/10.1007/s11251-023-09632-w
Korbach, A., Brünken, R., & Park, B. (2017). Measurement of cognitive load in multimedia learning: A comparison of different objective measures. Instructional Science, 45(4), 515–536. https://doi.org/10.1007/s11251-017-9413-5
Korbach, A., Brünken, R., & Park, B. (2018). Differentiating different types of cognitive load: A comparison of different measures. Educational Psychology Review, 30(2), 503–529. https://doi.org/10.1007/s10648-017-9404-8
Lehman, S., Schraw, G., McCrudden, M. T., & Hartley, K. (2007). Processing and recall of seductive details in scientific text. Contemporary Educational Psychology, 32(4), 569–587. https://doi.org/10.1016/j.cedpsych.2006.07.002
Leivas Pozzer, L., & Roth, W.-M. (2003). Prevalence, function, and structure of photographs in high school biology textbooks. Journal of Research in Science Teaching, 40(10), 1089–1114. https://doi.org/10.1002/tea.10122
Lenzner, A., Schnotz, W., & Müller, A. (2013). The role of decorative pictures in learning. Instructional Science, 41(5), 811–831. https://doi.org/10.1007/s11251-012-9256-z
Leopold, C., & Leutner, D. (2012). Science text comprehension: Drawing, main idea selection, and summarizing as learning strategies. Learning and Instruction, 22(1), 16–26. https://doi.org/10.1016/j.learninstruc.2011.05.005
Lin, L., & Atkinson, R. K. (2011). Using animations and visual cueing to support learning of scientific concepts and processes. Computers & Education, 56(3), 650–658. https://doi.org/10.1016/j.compedu.2010.10.007
Lubin, J., & Sewak, M. (2007). Enhancing learning through the use of graphic organizers: A Review of the literature. Journal of Special Education, 2(1), Article 5. https://doi.org/10.24113/ijellh.v7i11.10125
Magner, U. I. E., Schwonke, R., Aleven, V., Popescu, O., & Renkl, A. (2014). Triggering situational interest by decorative illustrations both fosters and hinders learning in computer-based learning environments. Learning and Instruction, 29, 141–152. https://doi.org/10.1016/j.learninstruc.2012.07.002
Mason, L., Tornatora, M. C., & Pluchino, P. (2013). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education, 60, 95–109. http://dx.doi.org/10.1016/j.compedu.2012.07 .011
Mautone, P. D., & Mayer, R. E. (2001). Signaling as a cognitive guide in multimedia learning. Journal of Educational Psychology, 93(2), 377–389. https://doi.org/10.1037/0022-0663.93.2.377
Mayer, R. E. (2008). Applying the science of learning: Evidence-based principles for the design of multimedia instruction. American psychologist, 63(8), 760. https://doi.org/10.1037/0003-066X.63.8.760
Mayer, R. E. (2019). Taking a new look at seductive details. Applied Cognitive Psychology, 33(1), 139–141. https://doi.org/10.1002/acp.3503
Mayer, R. E. (2021a). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 57–72). Cambridge University Press. https://doi.org/10.1017/9781108894333.008
Mayer, R. E. (2021b). The multimedia principle. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 145–157). Cambridge University Press. https://doi.org/10.1017/9781108894333.015
Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapangco, L. (1996). When less is more: Meaningful learning from visual and verbal summaries of textbook lessons. Journal of Educational Psychology, 88, 64–73. https://doi.org/10.1037/0022-0663.88.1.64
Mayer, R. E., & Fiorella, L. (2021). Principles for reducing extraneous processing in multimedia learning. In R. E. Mayer & L. Fiorella (Eds.), The Cambridge handbook of multimedia learning (pp. 185–198). Cambridge University Press.
https://doi.org/10.1017/9781108894333.019
Mayer, R. E., Griffith, E., Jurkowitz, I. T. N., & Rothman, D. (2008). Increased interestingness of extraneous details in a multimedia science presentation leads to decreased learning. Journal of Experimental Psychology: Applied, 14(4), 329–339. https://doi.org/10.1037/a0013835
Mayer, R. E., Heiser, J., & Lonn, S. (2001). Cognitive constraints on multimedia learning: When presenting more material results in less understanding. Journal of Educational Psychology, 93(1), 187–198. https://doi.org/10.1037//0022–0663.93.1.187
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43–52. https://doi.org/10.1207/S15326985EP3801_6
Mayer, R. E., & Pilegard, C. (2014). Principles for managing essential processing in multimedia learning: Segmenting, pretraining, and modality principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 316–344). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.016
McCrudden, M. T., Schraw, G., & Lehman, S. (2009). The use of adjunct displays to facilitate comprehension of causal relationships in expository text. Instructional Science, 37, 65–86. https://doi.org/10.1007/s11251-007-9036-3
McCrudden, M. T. (2019). The effect of task relevance instructions on memory for text. with seductive details. Applied Cognitive Psychology, 33(1), 31–37. https://doi.org/10.1002/acp.3455
McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19, 171–184. https://doi.org/10.1016/j.learninstruc.2008.03.005
Mede, E. (2010). The effects of instruction of graphic organizers in terms of students’ attitudes towards reading in English. Social and Behavioral Sciences, 2(2), 322–325. https://doi.org/10.1016/j.sbspro.2010.03.018
Miller–Cotto, D., Booth, J. L., & Newcombe, N. S. (2022). Sketching and verbal explanation: Do they help middle school children solve science problems. Applied Cognitive Psychology, 36(4), 919–935. https://doi.org/10.1002/acp.3980
Morehead, K., Rhodes, M. G., & DeLozier, S. (2016). Instructor and student knowledge of study strategies. Memory, 24(2), 257–271. https://doi.org/10.1080/09658211.2014.1001992
Moreno, R., & Mayer, R. E. (2000). A coherence effect in multimedia learning: The case for minimizing irrelevant sounds in the design of multimedia instructional messages. Journal of Educational Psychology, 92, 117–125. https://doi.org/10.1037/0022–0663.92.1.117
Moreno, R. (2007). Optimising learning from animations by minimising cognitive load: Cognitive and affective consequences of signalling and segmentation methods. Applied Cognitive Psychology, 21(6), 765–781. https://doi.org/10.1002/acp.1348
Moreno, R. (Ed.). (2010). Cognitive load theory: Historical development and relation to other theories. In J. L. Plass, R. Moreno, & R. Brünken (Eds), Cognitive load theory (pp: 9–28). Cambridge University Press. https://doi.org/10.1017/CBO9780511844744.003
Moreno, D. A., & Bobrow, D. G. (1975). On data–limited and resource limited processes. Cognitive Psychology, 7, 44–64. https://doi.org/10.1016/0010-0285(75)90004-3
Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding affects multimedia learning. Computers & Education, 53(2), 445–453. https://doi.org/10.1016/j.compedu.2009.03.002
Park, B., Flowerday, T., & Brünken, R. (2015a). Cognitive and affective effects of seductive details in multimedia learning. Computers in Human Behavior, 44, 267–278. https://doi.org/10.1016/j.chb.2014.10.061
Park, B., Korbach, A., & Brünken, R. (2015b). Do learner characteristics moderate the seductive details effect? A cognitive load study using eye-tracking. Journal of Educational Technology & Society, 18(4), 24–36. https://doi.org/10.1016/j.chb.2010.05.006
Park, B., Moreno, R., Seufert, T., & Brünken, R. (2011). Does cognitive load moderate the seductive details effect? A multimedia study. Computers in Human Behavior, 27(1), 5–10. https://doi.org/10.1016/j.chb.2010.05.006
Peshkam, A., Mensink, M. C., Putnam, A. L., & Rapp, D. N. (2011). Warning readers to avoid irrelevant information: When being vague might be valuable. Contemporary Educational Psychology, 36(3), 219–231. https://doi.org/10.1016/j.cedpsych.2010.10.006
Ponce, H. R., & Mayer, R. E. (2014). An eye movement analysis of highlighting and graphic organizer study aids for learning from expository text. Computers in Human Behavior, 41, 21–32. https://doi.org/10.1016/j.chb.2014.09.010
Ponce, H. R., Mayer, R. E., Loyola, M. S., & López, M. J. (2020). Study activities that foster generative learning: Notetaking, graphic organizer, and questioning. Journal of Educational Computing Research, 58(2), 275–296. https://doi.org/10.1177/073563311986555
Ponce, H. R., Mayer, R. E., Loyola, M. S., López, M. J., & Méndez, E. E. (2018). When two computer-supported learning strategies are better than one: An eye-tracking study. Computers & Education, 125, 376–388. https://doi.org/10.1016/j.compedu.2018.06.024
Rellensmann, J., Schukajlow, S., Blomberg, J., & Leopold, C. (2022). Effects of drawing instructions and strategic knowledge on mathematical modeling performance: Mediated by the use of the drawing strategy. Applied Cognitive Psychology, 36(2), 402–417. https://doi.org/10.1002/acp.3930
Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21(1), 1–29. https://doi.org/10.1207/s15516709cog2101_1
Renninger, K. A., Bachrach, J. E., & Hidi, S. E. (2019). Triggering and maintaining interest in early phases of interest development. Learning, Culture and Social Interaction, 23, Article 100260. https://doi.org/10.1016/j.lcsi.2018.11.007
Rey, G. D. (2012). A review of research and a meta-analysis of the seductive detail effect. Educational Research Review, 7(3), 216–237. https://doi.org/10.1016/j.edurev.2012.05.003
Rey, G. D. (2014). Seductive details and attention distraction: An eye tracker experiment. Computers in Human Behavior, 32, 133–144. https://doi.org/10.1016/j.chb.2013.11.017
Rey, G. D., Beege, M., Nebel, S., Wirzberger, M., Schmitt, T. H., & Schneider, S. (2019). A Meta-analysis of the segmenting effect. Educational Psychology Review, 31(2), 389–419. https://doi.org/10.1007/s10648–018–9456–4
Richter, J., Scheiter, K., & Eitel, A. (2016). Signaling text-picture relations in multimedia learning: A comprehensive meta-analysis. Educational Research Review, 17, 19–36. https://doi.org/10.1016/j.edurev.2015.12.003
Richter, J., Scheiter, K., & Eitel, A. (2018). Signaling text-picture relations in multimedia learning: The influence of prior knowledge. Journal of Educational Psychology, 110(4), 544. https://doi.org/10.1016/j.edurev.2015.12.003
Ring, M., Brahm, T., Richter, J., Scheiter, K., & Randler, C. (2022). Does active or passive signaling support integration of text and graphs?. Applied Cognitive Psychology, 36(1), 43–58. https://doi.org/10.1016/j.edurev.2015.12.003
Sadoski, M. (2001). Resolving the effects of concreteness on interest, comprehension, and learning important ideas from text. Educational Psychology Review, 13, 263–279. http://dx.doi.org/10.1023/A:1016 675822931
Sanchez, C. A., & Wiley, J. (2006). An examination of the seductive details effect in terms of working memory capacity. Memory & Cognition, 34(2), 344–355. https://doi.org/10.3758/BF03193412
Schmeck, A., Mayer, R. E., Opfermann, M., Pfeiffer, V., & Leutner, D. (2014). Drawing pictures during learning from scientific text: Testing the generative drawing effect and the prognostic drawing effect. Contemporary Educational Psychology, 39, 275–286. https://doi.org/10.1016/j.cedpsych.2014.07.003
Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). A closer look at split visual attention in system and self-paced instruction in multimedia learning. Learning and Instruction, 20, 100–110. https://dx.doi.org/10.1016/j.learninstruc.2009.02.011
Scheitr, K., & Eitel, A. (2015). Signals foster multimedia learning by supporting integration of highlighted text and diagram elements. Learning and Instruction, 36, 11–26. https://doi.org/10.1016/j.learninstruc.2014.11.002
Schneider, S., Beege, M., Nebel, S., & Rey, G. D. (2018). A meta-analysis of how signaling affects learning with media. Educational Research Review, 23, 1–24. https://doi.org/10.1016/j.edurev.2017.11.001
Schneider, S., Krieglstein, F., Beege, M., & Rey, G. D. (2021). How organization highlighting through signaling, spatial contiguity and segmenting can influence learning with concept maps. Computers and Education Open, 2, Artucle 100040. https://doi.org/10.1016/j.caeo.2021.100040
Schnotz, W. (2010). Reanalyzing the expertise reversal effect. Instructional Science, 38, 315–323. http://dx.doi.org/10.1007/s11251–0099104–y
Schraw, G., Flowerday, T., & Lehman, S. (2001). Increasing situational interest in the classroom. Educational Psychology Review, 13, 211–224. https://doi.org/10.1016/j.cedpsych.2015.08.004
Schukajlow, S., Blomberg, J., Rellensmann, J., & Leopold, C. (2022). The role of strategy-based motivation in mathematical problem solving: The case of learner-generated drawings. Learning and Instruction, 80, Article 101561. https://doi.org/10.1016/j.learninstruc.2021.101561
Schwamborn, A., Mayer, R. E., Thillmann, H., Leopold, C., & Leutner, D. (2010). Drawing as a generative activity and drawing as a prognostic activity. Journal of Educational Psychology, 102, 872–879. https://doi.org/10.1037/a0019640
Simonsmeier, B. A., Flaig, M., Deiglmayr, A., Schalk, L., & Schneider, M. (2022). Domain-specific prior knowledge and learning: A meta-analysis. Educational Psychologist, 57(1), 31–54. https://doi.org/10.1080/00461520.2021.1939700
Stull, A. T., & Mayer, R. E. (2007). Learning by doing versus learning by viewing: Three experimental comparisons of learner-generated versus author-provided graphic organizers. Journal of Educational Psychology, 99(4), 808–820. https://doi.org/10.1037/0022–0663.99.4.808
Stull, A. T., Hegarty, M., Dixon, B., & Stieff, M. (2012). Representational translation with concrete models in organic chemistry. Cognition and Instruction, 4, 404–434. https://doi.org/10.1080/07370008.2012.719956
Stull, A. T., Gainer, M. J., & Hegarty, M. (2018). Learning by enacting: The role of embodiment in chemistry education. Learning and Instruction, 55, 80–92. https://doi.org/10.1016/j.learninstruc.2017.09.008
Sundararajan, N., & Adesope, O. (2020). Keep it coherent: A meta-analysis of the seductive details effect. Educational Psychology Review, 32(3), 707–734. https://doi.org/10.1007/s10648-020-09522-4
Sung, E., & Mayer, R. E. (2012). Affective impact of navigational and signaling aids to e-learning. Computers in Human Behavior, 28(2), 473–483. https://doi.org/10.1016/j.chb.2011.10.019
Sweller, J., Ayres, P., Kalyuga, S. (2011). Intrinsic and extraneous cognitive load. Cognitive load theory (pp.57–69). Springer. https://doi.org/10.1007/978-1-4419-8126-4_5
Sweller, J., van Merriënboer, Jeroen, J. G., & Paas, F. (2019) Cognitive architecture and instructional design: 20 Years Later. Educational Psychology Review, 31, 261–292. https://doi.org/10.1007/s10648-019-09465-5
Tarchi, C. (2017). Comprehending expository texts: The role of cognitive and motivational factors. Reading Psychology, 38(2), 154–181. https://doi.org/10.1080/02702711.2016.1245229
Tislar, K. L., & Steelman, K. S. (2021). Inconsistent seduction: Addressing confounds and methodological issues in the study of the seductive detail effect. Brain and Behavior, 11(9), 1–15. https://doi.org/10.1002/brb3.2322
Tsai, M. -J., Wu, A. -H., & Chen, Y. (2019). Static and dynamic seductive illustration effects on text‐and‐graphic learning processes, perceptions, and outcomes: Evidence from eye tracking. Applied Cognitive Psychology, 33(1), 109–123. https://doi.org/10.1002/acp.3514
van de Pol, J., van Loon, M., van Gog, T., Braumann, S., & de Bruin, A. (2020). Mapping and drawing to improve students’ and teachers’ monitoring and regulation of students’ learning from text: Current findings and future directions. Educational Psychology Review, 32(4), 951–977. https://doi.org/10.1007/s10648-020-09560-y
Van Gog, T., & Paas, F. (2008). Instructional efficiency: Revisiting the original construct in educational research. Educational Psychologist, 43, 16–26. http://dx.doi.org/10.1080/00461520701756248
Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: literature review and synthesis. Educational Psychology Review, 17(4), 285–325. https://doi.org/10.1007/s10648–005–8136–3
Van Meter, P., Aleksic, M., Schwartz, A., & Garner, J. (2006). Learner-generated drawing as a strategy for learning from content area text. Contemporary Educational Psychology, 31(2), 142–166. https://doi.org/10.1016/j.cedpsych.2005.04.001
Wade, S. E., & Adams, R. B. (1990). Effects of importance and interest on recall of biographical text. Journal of Reading Behavior, 22(4), 331–353. https://doi.org/10.1080/10862969009547
Wang, X., Mayer, R. E., Zhou, P., & Lin, L. (2021). Benefits of interactive graphic organizers in online learning: Evidence for generative learning theory. Journal of Educational Psychology, 113(5), 1024–1037. https://doi.org/10.1037/edu0000606
Wang, Z., & Adesope, O. (2016). Exploring the effects of seductive details with the 4-phase model of interest. Learning and Motivation, 55, 65–77. https://doi.org/10.1016/j.lmot.2016.06.003
Wang, Z., Sundararajan, N., Adesope, O. O., & Ardasheva, Y. (2017). Moderating the seductive details effect in multimedia learning with note‐taking. British Journal of Educational Technology, 48(6), 1380–1389. https://doi.org/10.1111/bjet.12476
Wang, Z., & Adesope, O. (2017). Do focused self-explanation prompts overcome seductive details? A multimedia study. Journal of Educational Technology & Society, 20(4), 47–57. https://doi.org/10.1080/10494820.2014.924531
Weinstein, C. E., Acee, T. W., & Jung, J. (2011). Self‐regulation and learning strategies. New Directions for Teaching and Learning, 2011(126), 45–53. https://doi.org/10.1002/tl.443
Wittrock, M. C. (1974). Learning as a generative process. Educational Psychologist, 11(2), 87–95. https://doi.org/10.1080/ 00461520903433554.
Zhang, Q., & Fiorella, L. (2019). Role of generated and provided visuals in supporting learning from scientific text. Contemporary Educational Psychology, 59, Article 101808. https://doi.org/10.1016/j.cedpsych.2019.101808